145 research outputs found
Role of the ATPase/helicase maleless (MLE) in the assembly, targeting, spreading and function of the male-specific lethal (MSL) complex of Drosophila
<p>Abstract</p> <p>Background</p> <p>The male-specific lethal (MSL) complex of <it>Drosophila </it>remodels the chromatin of the X chromosome in males to enhance the level of transcription of most X-linked genes, and thereby achieve dosage compensation. The core complex consists of five proteins and one of two non-coding RNAs. One of the proteins, MOF (males absent on the first), is a histone acetyltransferase that specifically acetylates histone H4 at lysine 16. Another protein, maleless (MLE), is an ATP-dependent helicase with the ability to unwind DNA/RNA or RNA/RNA substrates <it>in vitro</it>. Recently, we showed that the ATPase activity of MLE is sufficient for the hypertranscription of genes adjacent to a high-affinity site by MSL complexes located at that site. The helicase activity is required for the spreading of the complex to the hundreds of positions along the X chromosome, where it is normally found. In this study, to further understand the role of MLE in the function of the MSL complex, we analyzed its relationship to the other complex components by creating a series of deletions or mutations in its putative functional domains, and testing their effect on the distribution and function of the complex <it>in vivo</it>.</p> <p>Results</p> <p>The presence of the RB2 RNA-binding domain is necessary for the association of the MSL3 protein with the other complex subunits. In its absence, the activity of the MOF subunit was compromised, and the complex failed to acetylate histone H4 at lysine 16. Deletion of the RB1 RNA-binding domain resulted in complexes that maintained substantial acetylation activity but failed to spread beyond the high-affinity sites. Flies bearing this mutation exhibited low levels of roX RNAs, indicating that these RNAs failed to associate with the proteins of the complex and were degraded, or that MLE contributes to their synthesis. Deletion of the glycine-rich C-terminal region, which contains a nuclear localization sequence, caused a substantial level of retention of the other MSL proteins in the cytoplasm. These data suggest that the MSL proteins assemble into complexes or subcomplexes before entering the nucleus.</p> <p>Conclusions</p> <p>This study provides insights into the role that MLE plays in the function of the MSL complex through its association with roX RNAs and the other MSL subunits, and suggests a hypothesis to explain the role of MLE in the synthesis of these RNAs.</p
Timing Is Everything:Impact of Naturally Occurring Staphylococcus aureus AgrC Cytoplasmic Domain Adaptive Mutations on Autoinduction
Mutations in the polymorphic Staphylococcus aureus agr locus responsible for quorum sensing (QS) dependent virulence gene regulation occur frequently during host adaptation. In two genomically closely related S. aureus clinical isolates exhibiting marked differences in Pantone-Valentine leukocidin production, a mutation conferring an N267I substitution was identified in the cytoplasmic domain of the QS sensor kinase, AgrC. This natural mutation delayed the onset and accumulation of auto-inducing peptide (AIP) and showed reduced responsiveness to exogenous AIPs. Other S. aureus strains harbouring naturally occurring AgrC cytoplasmic domain mutations were identified including T247I, I311T, A343T, L245S and F264C. These mutations were associated with reduced cytotoxicity, delayed/reduced AIP production and impaired sensitivity to exogenous AIP. Molecular dynamics simulations were used to model the AgrC cytoplasmic domain conformational changes arising. While mutations were localised in different parts of the C-terminal domain, their impact on molecular structure was manifested by twisting of the leading helical hairpin α1-α2, accompanied by repositioning of the H-box and G-box along with closure of the flexible loop connecting the two and occlusion of the ATP-binding site. Such conformational rearrangements of key functional subdomains in these mutants highlight the cooperative response of molecular structure involving dimerization, ATP binding and phosphorylation, as well as the binding site for the downstream response element AgrA. These appear to increase the threshold for agr activation via AIP-dependent autoinduction so reducing virulence and maintaining S. aureus in an agr-down-regulated ‘colonization’ mode
Association between birth weight and educational attainment : an individual-based pooled analysis of nine twin cohorts
Background There is evidence that birth weight is positively associated with education, but it remains unclear whether this association is explained by familial environmental factors, genetic factors or the intrauterine environment. We analysed the association between birth weight and educational years within twin pairs, which controls for genetic factors and the environment shared between co-twins. Methods The data were derived from nine twin cohorts in eight countries including 6116 complete twin pairs. The association between birth weight and educational attainment was analysed both between individuals and within pairs using linear regression analyses. Results In between-individual analyses, birth weight was not associated with educational years. Within-pairs analyses revealed positive but modest associations for some sex, zygosity and birth year groups. The greatest association was found in dizygotic (DZ) men (0.65 educational years/kg birth weight, p=0.006); smaller effects of 0.3 educational years/kg birth weight were found within monozygotic (MZ) twins of both sexes and opposite-sex DZ twins. The magnitude of the associations differed by birth year in MZ women and opposite-sex DZ twins, showing a positive association in the 1915-1959 birth cohort but no association in the 1960-1984 birth cohort. Conclusion Although associations are weak and somewhat inconsistent, our results suggest that intrauterine environment may play a role when explaining the association between birth weight and educational attainment.Peer reviewe
Evolution and Global Transmission of a Multidrug-Resistant, Community-Associated Methicillin-Resistant Staphylococcus aureus Lineage from the Indian Subcontinent.
The evolution and global transmission of antimicrobial resistance have been well documented for Gram-negative bacteria and health care-associated epidemic pathogens, often emerging from regions with heavy antimicrobial use. However, the degree to which similar processes occur with Gram-positive bacteria in the community setting is less well understood. In this study, we traced the recent origins and global spread of a multidrug-resistant, community-associated Staphylococcus aureus lineage from the Indian subcontinent, the Bengal Bay clone (ST772). We generated whole-genome sequence data of 340 isolates from 14 countries, including the first isolates from Bangladesh and India, to reconstruct the evolutionary history and genomic epidemiology of the lineage. Our data show that the clone emerged on the Indian subcontinent in the early 1960s and disseminated rapidly in the 1990s. Short-term outbreaks in community and health care settings occurred following intercontinental transmission, typically associated with travel and family contacts on the subcontinent, but ongoing endemic transmission was uncommon. Acquisition of a multidrug resistance integrated plasmid was instrumental in the emergence of a single dominant and globally disseminated clade in the early 1990s. Phenotypic data on biofilm, growth, and toxicity point to antimicrobial resistance as the driving force in the evolution of ST772. The Bengal Bay clone therefore combines the multidrug resistance of traditional health care-associated clones with the epidemiological transmission of community-associated methicillin-resistant S. aureus (MRSA). Our study demonstrates the importance of whole-genome sequencing for tracking the evolution of emerging and resistant pathogens. It provides a critical framework for ongoing surveillance of the clone on the Indian subcontinent and elsewhere.IMPORTANCE The Bengal Bay clone (ST772) is a community-associated and multidrug-resistant Staphylococcus aureus lineage first isolated from Bangladesh and India in 2004. In this study, we showed that the Bengal Bay clone emerged from a virulent progenitor circulating on the Indian subcontinent. Its subsequent global transmission was associated with travel or family contact in the region. ST772 progressively acquired specific resistance elements at limited cost to its fitness and continues to be exported globally, resulting in small-scale community and health care outbreaks. The Bengal Bay clone therefore combines the virulence potential and epidemiology of community-associated clones with the multidrug resistance of health care-associated S. aureus lineages. This study demonstrates the importance of whole-genome sequencing for the surveillance of highly antibiotic-resistant pathogens, which may emerge in the community setting of regions with poor antibiotic stewardship and rapidly spread into hospitals and communities across the world
Recommended from our members
Evolution and Global Transmission of a Multidrug-Resistant, Community-Associated Methicillin-Resistant Staphylococcus aureus Lineage from the Indian Subcontinent
The evolution and global transmission of antimicrobial resistance have been well documented for Gram-negative bacteria and health care-associated epidemic pathogens, often emerging from regions with heavy antimicrobial use. However, the degree to which similar processes occur with Gram-positive bacteria in the community setting is less well understood. In this study, we traced the recent origins and global spread of a multidrug-resistant, community-associated Staphylococcus aureus lineage from the Indian subcontinent, the Bengal Bay clone (ST772). We generated whole-genome sequence data of 340 isolates from 14 countries, including the first isolates from Bangladesh and India, to reconstruct the evolutionary history and genomic epidemiology of the lineage. Our data show that the clone emerged on the Indian subcontinent in the early 1960s and disseminated rapidly in the 1990s. Short-term outbreaks in community and health care settings occurred following intercontinental transmission, typically associated with travel and family contacts on the subcontinent, but ongoing endemic transmission was uncommon. Acquisition of a multidrug resistance integrated plasmid was instrumental in the emergence of a single dominant and globally disseminated clade in the early 1990s. Phenotypic data on biofilm, growth, and toxicity point to antimicrobial resistance as the driving force in the evolution of ST772. The Bengal Bay clone therefore combines the multidrug resistance of traditional health care-associated clones with the epidemiological transmission of community-associated methicillin-resistant S. aureus (MRSA). Our study demonstrates the importance of whole-genome sequencing for tracking the evolution of emerging and resistant pathogens. It provides a critical framework for ongoing surveillance of the clone on the Indian subcontinent and elsewhere
Clonal differences in Staphylococcus aureus bacteraemia-associated mortality.
The bacterium Staphylococcus aureus is a major human pathogen for which the emergence of antibiotic resistance is a global public health concern. Infection severity, and in particular bacteraemia-associated mortality, has been attributed to several host-related factors, such as age and the presence of comorbidities. The role of the bacterium in infection severity is less well understood, as it is complicated by the multifaceted nature of bacterial virulence, which has so far prevented a robust mapping between genotype, phenotype and infection outcome. To investigate the role of bacterial factors in contributing to bacteraemia-associated mortality, we phenotyped a collection of sequenced clinical S. aureus isolates from patients with bloodstream infections, representing two globally important clonal types, CC22 and CC30. By adopting a genome-wide association study approach we identified and functionally verified several genetic loci that affect the expression of cytolytic toxicity and biofilm formation. By analysing the pooled data comprising bacterial genotype and phenotype together with clinical metadata within a machine-learning framework, we found significant clonal differences in the determinants most predictive of poor infection outcome. Whereas elevated cytolytic toxicity in combination with low levels of biofilm formation was predictive of an increased risk of mortality in infections by strains of a CC22 background, these virulence-specific factors had little influence on mortality rates associated with CC30 infections. Our results therefore suggest that different clones may have adopted different strategies to overcome host responses and cause severe pathology. Our study further demonstrates the use of a combined genomics and data analytic approach to enhance our understanding of bacterial pathogenesis at the individual level, which will be an important step towards personalized medicine and infectious disease management
Birth size and gestational age in opposite-sex twins as compared to same-sex twins : An individual-based pooled analysis of 21 cohorts
It is well established that boys are born heavier and longer than girls, but it remains unclear whether birth size in twins is affected by the sex of their co-twin. We conducted an individual-based pooled analysis of 21 twin cohorts in 15 countries derived from the COllaborative project of Development of Anthropometrical measures in Twins (CODATwins), including 67,850 dizygotic twin individuals. Linear regression analyses showed that boys having a co-twin sister were, on average, 31 g (95%Cl 18 to 45) heavier and 0.16 cm (95%CI 0.045 to 0.274) longer than those with a co-twin brother. In girls, birth size was not associated (5 g birth weight; 95%Cl -8 to -18 and -0.089 cm birth length; 95% CI -0.202 to 0.025) with the sex of the co-twin. Gestational age was slightly shorter in boy-boy pairs than in boy-girl and girl-girl pairs. When birth size was standardized by gestational age, the magnitude of the associations was attenuated in boys, particularly for birth weight. In conclusion, boys with a co-twin sister are heavier and longer at birth than those with a co-twin brother. However, these differences are modest and partly explained by a longer gestation in the presence of a co-twin sister.Peer reviewe
Association between birthweight and later body mass index : an individual-based pooled analysis of 27 twin cohorts participating in the CODATwins project
Background: There is evidence that birthweight is positively associated with body mass index (BMI) in later life, but it remains unclear whether this is explained by genetic factors or the intrauterine environment. We analysed the association between birthweight and BMI from infancy to adulthood within twin pairs, which provides insights into the role of genetic and environmental individual-specific factors. Methods: This study is based on the data from 27 twin cohorts in 17 countries. The pooled data included 78 642 twin individuals (20 635 monozygotic and 18 686 same-sex dizygotic twin pairs) with information on birthweight and a total of 214 930 BMI measurements at ages ranging from 1 to 49 years. The association between birthweight and BMI was analysed at both the individual and within-pair levels using linear regression analyses. Results: At the individual level, a 1-kg increase in birthweight was linearly associated with up to 0.9 kg/m(2) higher BMI (P <0.001). Within twin pairs, regression coefficients were generally greater (up to 1.2 kg/m(2) per kg birthweight, P <0.001) than those from the individual-level analyses. Intra-pair associations between birthweight and later BMI were similar in both zygosity groups and sexes and were lower in adulthood. Conclusions: These findings indicate that environmental factors unique to each individual have an important role in the positive association between birthweight and later BMI, at least until young adulthood.Peer reviewe
Genetic and environmental influences on human height from infancy through adulthood at different levels of parental education
Genetic factors explain a major proportion of human height variation, but differences in mean stature have also been found between socio-economic categories suggesting a possible effect of environment. By utilizing a classical twin design which allows decomposing the variation of height into genetic and environmental components, we tested the hypothesis that environmental variation in height is greater in offspring of lower educated parents. Twin data from 29 cohorts including 65,978 complete twin pairs with information on height at ages 1 to 69 years and on parental education were pooled allowing the analyses at different ages and in three geographic-cultural regions (Europe, North America and Australia, and East Asia). Parental education mostly showed a positive association with offspring height, with significant associations in mid-childhood and from adolescence onwards. In variance decomposition modeling, the genetic and environmental variance components of height did not show a consistent relation to parental education. A random-effects meta-regression analysis of the aggregate-level data showed a trend towards greater shared environmental variation of height in low parental education families. In conclusion, in our very large dataset from twin cohorts around the globe, these results provide only weak evidence for the study hypothesis.Peer reviewe
Genetic and environmental variation in educational attainment : an individual-based analysis of 28 twin cohorts
We investigated the heritability of educational attainment and how it differed between birth cohorts and cultural-geographic regions. A classical twin design was applied to pooled data from 28 cohorts representing 16 countries and including 193,518 twins with information on educational attainment at 25 years of age or older. Genetic factors explained the major part of individual differences in educational attainment (heritability: a(2)=0.43; 0.41-0.44), but also environmental variation shared by co-twins was substantial (c(2)=0.31; 0.30-0.33). The proportions of educational variation explained by genetic and shared environmental factors did not differ between Europe, North America and Australia, and East Asia. When restricted to twins 30 years or older to confirm finalized education, the heritability was higher in the older cohorts born in 1900-1949 (a(2)=0.44; 0.41-0.46) than in the later cohorts born in 1950-1989 (a(2)=0.38; 0.36-0.40), with a corresponding lower influence of common environmental factors (c(2)=0.31; 0.29-0.33 and c(2)=0.34; 0.32-0.36, respectively). In conclusion, both genetic and environmental factors shared by co-twins have an important influence on individual differences in educational attainment. The effect of genetic factors on educational attainment has decreased from the cohorts born before to those born after the 1950s.Peer reviewe
- …