2 research outputs found

    In vitro apatite formation and visible-light photocatalytic activity of Ti metal subjected to chemical and thermal treatments

    Get PDF
    In this study, we investigated the surface structure, apatite formation in simulated body fluid (SBF), and visible-light photocatalytic activity of Ti metal subjected to chemical and thermal treatments. Ti metal samples treated with NaOH, a nitrogen-containing solution (0.1 M HNO3, 0.1–1.0 M (H2N)2Cdouble bond; length as m-dashO, or 0.1–1.0 M NH4Cl), and heat showed apatite formation on their surfaces in SBF, whereas those treated with NaOH, 0.5 or 1.0 M HNO3, and heat did not. In the former case, apatite formation may be attributable to the fine network structure of anatase-type TiO2 doped with a small amount of nitrogen on the surface of the Ti metal. The Ti metal treated with the latter treatment showed higher methylene blue decomposition than the untreated sample and the one treated with the former treatment. This preliminary result suggests that Ti metal treated with NaOH, 0.1 M HNO3, and heat can potentially show visible-light-induced antibacterial property as well as bone-bonding ability

    In vitro apatite formation and visible-light photocatalytic activity of Ti metal subjected to chemical and thermal treatments

    No full text
    In this study, we investigated the surface structure, apatite formation in simulated body fluid (SBF), and visible-light photocatalytic activity of Ti metal subjected to chemical and thermal treatments. Ti metal samples treated with NaOH, a nitrogen-containing solution (0.1 M HNO3, 0.1–1.0 M (H2N)2Cdouble bond; length as m-dashO, or 0.1–1.0 M NH4Cl), and heat showed apatite formation on their surfaces in SBF, whereas those treated with NaOH, 0.5 or 1.0 M HNO3, and heat did not. In the former case, apatite formation may be attributable to the fine network structure of anatase-type TiO2 doped with a small amount of nitrogen on the surface of the Ti metal. The Ti metal treated with the latter treatment showed higher methylene blue decomposition than the untreated sample and the one treated with the former treatment. This preliminary result suggests that Ti metal treated with NaOH, 0.1 M HNO3, and heat can potentially show visible-light-induced antibacterial property as well as bone-bonding ability
    corecore