21 research outputs found

    Are take-home naloxone programmes effective? Systematic review utilizing application of the Bradford Hill criteria.

    Get PDF
    Fatal outcome of opioid overdose, once detected, is preventable through timely administration of the antidote naloxone. Take-home naloxone provision directly to opioid users for emergency use has been implemented recently in more than 15 countries worldwide, albeit mainly as pilot schemes and without formal evaluation. This systematic review assesses the effectiveness of take-home naloxone, with two specific aims: (1) to study the impact of take-home naloxone distribution on overdose-related mortality; and (2) to assess the safety of take-home naloxone in terms of adverse events. Conclusions: Take-home naloxone programmes are found to reduce overdose mortality among programme participants and in the community and have a low rate of adverse events

    First Human Use of a Radiopharmaceutical Prepared by Continuous-Flow Microfluidic Radiofluorination: Proof of Concept with the Tau Imaging Agent [F]T807

    No full text
    Despite extensive preclinical imaging with radiotracers developed by continuous-flow microfluidics, a positron emission tomographic (PET) radiopharmaceutical has not been reported for human imaging studies by this technology. The goal of this study was to validate the synthesis of the tau radiopharmaceutical 7-(6-fluoropyridin-3-yl)-5H-pyrido[4,3-b]indole ([ 18 F]T807) and perform first-in-human PET scanning enabled by microfluidic flow chemistry. [ 18 F]T807 was synthesized by our modified one-step method and adapted to suit a commercial microfluidic flow chemistry module. For this proof of concept, the flow system was integrated to a GE Tracerlab FX FN unit for high-performance liquid chromatography purification and formulation. Three consecutive productions of [ 18 F]T807 were conducted to validate this radiopharmaceutical. Uncorrected radiochemical yields of 17 ± 1% of crude [ 18 F]T807 (≈ 500 mCi, radiochemical purity 95%) were obtained from the microfluidic device. The crude material was then purified, and > 100 mCi of the final product was obtained in an overall uncorrected radiochemical yield of 5 ± 1% ( n = 3), relative to starting [ 18 F]fluoride (end of bombardment), with high radiochemical purity (≥ 99%) and high specific activities (6 Ci/μmol) in 100 minutes. A clinical research study was carried out with [ 18 F]T807, representing the first reported human imaging study with a radiopharmaceutical prepared by this technology

    First Human Use of a Radiopharmaceutical Prepared by Continuous-Flow Microfluidic Radiofluorination: Proof of Concept with the Tau Imaging Agent [ 18

    No full text
    Despite extensive preclinical imaging with radiotracers developed by continuous-flow microfluidics, a positron emission tomographic (PET) radiopharmaceutical has not been reported for human imaging studies by this technology. The goal of this study was to validate the synthesis of the tau radiopharmaceutical 7-(6-fluoropyridin-3-yl)-5H-pyrido[4,3-b]indole ([ 18 F]T807) and perform first-in-human PET scanning enabled by microfluidic flow chemistry. [ 18 F]T807 was synthesized by our modified one-step method and adapted to suit a commercial microfluidic flow chemistry module. For this proof of concept, the flow system was integrated to a GE Tracerlab FX FN unit for high-performance liquid chromatography purification and formulation. Three consecutive productions of [ 18 F]T807 were conducted to validate this radiopharmaceutical. Uncorrected radiochemical yields of 17 ± 1% of crude [ 18 F]T807 (≈ 500 mCi, radiochemical purity 95%) were obtained from the microfluidic device. The crude material was then purified, and > 100 mCi of the final product was obtained in an overall uncorrected radiochemical yield of 5 ± 1% ( n = 3), relative to starting [ 18 F]fluoride (end of bombardment), with high radiochemical purity (≥ 99%) and high specific activities (6 Ci/μmol) in 100 minutes. A clinical research study was carried out with [ 18 F]T807, representing the first reported human imaging study with a radiopharmaceutical prepared by this technology
    corecore