3 research outputs found

    Coherency of the superconducting state: the muon spin rotation and ARPES studies of (BiPb)_2(SrLa)_2CuO_{6+\delta}

    Full text link
    The superfluid density \rho_s in underdoped (T_c\simeq23K), optimally doped (T_c\simeq35K) and overdoped (T_c\simeq29K) single crystalline (BiPb)_2(SrLa)_2CuO_{6+\delta} samples was studied by means of muon-spin rotation (\muSR). By combining the \muSR data with the results of ARPES measurements on similar samples [Nature 457, 296 (2009)] good self-consistent agreement is obtained between two techniques concerning the temperature and the doping evolution of \rho_s.Comment: 4 pages, 3 figures

    Disentangling Cooper-pair formation above Tc from the pseudogap state in the cuprates

    Full text link
    The discovery of the pseudogap in the cuprates created significant excitement amongst physicists as it was believed to be a signature of pairing, in some cases well above the room temperature. In this "pre-formed pairs" scenario, the formation of pairs without quantum phase rigidity occurs below T*. These pairs condense and develop phase coherence only below Tc. In contrast, several recent experiments reported that the pseudogap and superconducting states are characterized by two different energy scales, pointing to a scenario, where the two compete. However a number of transport, magnetic, thermodynamic and tunneling spectroscopy experiments consistently detect a signature of phase-fluctuating superconductivity above leaving open the question of whether the pseudogap is caused by pair formation or not. Here we report the discovery of a spectroscopic signature of pair formation and demonstrate that in a region of the phase diagram commonly referred to as the "pseudogap", two distinct states coexist: one that persists to an intermediate temperature Tpair and a second that extends up to T*. The first state is characterized by a doping independent scaling behavior and is due to pairing above Tc, but significantly below T*. The second state is the "proper" pseudogap - characterized by a "checker board" pattern in STM images, the absence of pair formation, and is likely linked to Mott physics of pristine CuO2 planes. Tpair has a universal value around 130-150K even for materials with very different Tc, likely setting limit on highest, attainable Tc in cuprates. The observed universal scaling behavior with respect to Tpair indicates a breakdown of the classical picture of phase fluctuations in the cuprates.Comment: 9 pages, 4 figure
    corecore