485 research outputs found

    Interplay of Kondo and superconducting correlations in the nonequilibrium Andreev transport through a quantum dot

    Full text link
    Using the modified perturbation theory, we theoretically study the nonequilibrium Andreev transport through a quantum dot coupled to normal and superconducting leads (N-QD-S), which is strongly influenced by the Kondo and superconducting correlations. From the numerical calculation, we find that the renormalized couplings between the leads and the dot in the equilibrium states characterize the peak formation in the nonequilibrium differential conductance. In particular, in the Kondo regime, the enhancement of the Andreev transport via a Kondo resonance occurs in the differential conductance at a finite bias voltage, leading to an anomalous peak whose position is given by the renormalized parameters. In addition to the peak, we show that the energy levels of the Andreev bound states give rise to other peaks in the differential conductance in the strongly correlated N-QD-S system. All these features of the nonequilibrium transport are consistent with those in the recent experimental results [R. S. Deacon {\it et al.}, Phys. Rev. Lett. {\bf 104}, 076805 (2010); Phys. Rev. B {\bf 81}, 12308 (2010)]. We also find that the interplay of the Kondo and superconducting correlations induces an intriguing pinning effect of the Andreev resonances to the Fermi level and its counter position.Comment: 22 pages, 23 figure

    Correlated electron transport through double quantum dots coupled to normal and superconducting leads

    Full text link
    We study Andreev transport through double quantum dots connected in series normal and superconducting (SC) leads, using the numerical renormalization group. The ground state of this system shows a crossover between a local Cooper-pairing singlet state and a Kondo singlet state, which is caused by the competition between the Coulomb interaction and the SC proximity. We show that the ground-state properties reflect this crossover especially for small values of the inter-dot coupling tt, while in the opposite case, for large tt, another singlet with an inter-dot character becomes dominant. We find that the conductance for the local SC singlet state has a peak with the unitary-limit value 4e2/h4e^2/h. In contrast, the Andreev reflection is suppressed in the Kondo regime by the Coulomb interaction. Furthermore, the conductance has two successive peaks in the transient region of the crossover. It is further elucidated that the gate voltage gives a different variation into the crossover. Specifically, as the energy level of the dot that is coupled to the normal lead varies, the Kondo screening cloud is deformed to a long-range singlet bond.Comment: 11 pages, 10 figure

    Fluctuations of the Lyapunov exponent in 2D disordered systems

    Full text link
    We report a numerical investigation of the fluctuations of the Lyapunov exponent of a two dimensional non-interacting disordered system. While the ratio of the mean to the variance of the Lyapunov exponent is not constant, as it is in one dimension, its variation is consistent with the single parameter scaling hypothesis

    Interference Effects on Kondo-Assisted Transport through Double Quantum Dots

    Full text link
    We systematically investigate electron transport through double quantum dots with particular emphasis on interference induced via multiple paths of electron propagation. By means of the slave-boson mean-field approximation, we calculate the conductance, the local density of states, the transmission probability in the Kondo regime at zero temperature. It is clarified how the Kondo-assisted transport changes its properties when the system is continuously changed among the serial, parallel and T-shaped double dots. The obtained results for the conductance are explained in terms of the Kondo resonances influenced by interference effects. We also discuss the impacts due to the spin-polarization of ferromagnetic leads.Comment: 9 pages, 11 figures ; minor corrections and references adde

    Large magneto-thermal effect and the spin-phonon coupling in a parent insulating cuprate Pr_{1.3}La_{0.7}CuO_4

    Full text link
    The magnetic-field (H) dependence of the thermal conductivity \kappa of Pr_{1.3}La_{0.7}CuO_4 is found to show a pronounced minimum for in-plane fields at low temperature, which is best attributed to the scattering of phonons by free spins that are seen by a Schottky-type specific heat and a Curie-Weiss susceptibility. Besides pointing to a strong spin-phonon coupling in cuprates, the present result demonstrates that the H-dependence of the phonon heat transport should not be naively neglected when discussing the \kappa(H) behavior of cuprates, since the Schottky anomaly is ubiquitously found in cuprates at any doping.Comment: 6 pages, 4 figures, accepted for publication in Phys. Rev.

    Anomalous suppression of the superfluid density in the CuxBi2Se3 superconductor upon progressive Cu intercalation

    Full text link
    CuxBi2Se3 was recently found to be likely the first example of a time-reversal-invariant topological superconductor accompanied by helical Majorana fermions on the surface. Here we present that progressive Cu intercalation into this system introduces significant disorder and leads to an anomalous suppression of the superfluid density which was obtained from the measurements of the lower critical field. At the same time, the transition temperature T_c is only moderately suppressed, which agrees with a recent prediction for the impurity effect in this class of topological superconductors bearing strong spin-orbit coupling. Those unusual disorder effects give support to the possible odd-parity pairing state in CuxBi2Se3.Comment: 5 pages, 4 figures; title has been changed; final version published in Phys. Rev. B, Rapid Communication

    Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se

    Full text link
    Topological insulators are predicted to present novel surface transport phenomena, but their experimental studies have been hindered by a metallic bulk conduction that overwhelms the surface transport. We show that a new topological insulator, Bi2Te2Se, presents a high resistivity exceeding 1 Ohm-cm and a variable-range hopping behavior, and yet presents Shubnikov-de Haas oscillations coming from the surface Dirac fermions. Furthermore, we have been able to clarify both the bulk and surface transport channels, establishing a comprehensive understanding of the transport in this material. Our results demonstrate that Bi2Te2Se is the best material to date for studying the surface quantum transport in a topological insulator.Comment: 4 pages, 3 figure

    Specific-heat evidence for strong electron correlations in the thermoelectric material (Na,Ca)Co_{2}O_{4}

    Full text link
    The specific heat of (Na,Ca)Co_{2}O_{4} is measured at low-temperatures to determine the magnitude of the electronic specific-heat coefficient \gamma, in an attempt to gain an insight into the origin of the unusually large thermoelectric power of this compound. It is found that \gamma is as large as 48 mJ/molK^2, which is an order of magnitude larger than \gamma of simple metals. This indicates that (Na,Ca)Co_{2}O_{4} is a strongly-correlated electron system, where the strong correlation probably comes from the low-dimensionality and the frustrated spin structure. We discuss how the large thermopower and its dependence on Ca doping can be understood with the strong electron correlations.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev.
    corecore