145 research outputs found

    Detection of vitellogenin incorporation into zebrafish oocytes by FITC fluorescence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large volumes of lymph can be collected from the eye-sacs of bubble-eye goldfish. We attempted to induce vitellogenin (Vtg) in the eye-sac lymph of bubble-eye goldfish and develop a method for visualizing Vtg incorporation by zebrafish oocytes using FITC-labeling.</p> <p>Methods</p> <p>Estrogen efficiently induced Vtg in the eye-sac lymph of goldfish. After FITC-labeled Vtg was prepared, it was injected into mature female zebrafish.</p> <p>Results</p> <p>Incorporation of FITC-labeled Vtg by zebrafish oocytes was detected in <it>in vivo </it>and <it>in vitro </it>experiments. The embryos obtained from zebrafish females injected with FITC-labeled Vtg emitted FITC fluorescence from the yolk sac and developed normally.</p> <p>Conclusion</p> <p>This method for achieving Vtg incorporation by zebrafish oocytes could be useful in experiments related to the development and endocrinology of zebrafish oocytes.</p

    Diarylethene Self-Assembled Monolayers: Cocrystallization and Mixing-Induced Cooperativity Highlighted by Scanning Tunneling Microscopy at the Liquid/Solid Interface

    Get PDF
    International audienceThe control over 2-D multi-component molecular orderings on surfaces is a key technology to realize advanced materials with stimuli-responsive properties. The fractional coverage (θ) at a given concentration can be determined from two parameters: the equilibrium constant (Ke) and the degree of cooperativity (σ). The parameters for the formation of self-assembled monolayer of pure diarylethene isomers were obtained by STM measurements on HOPG. These mono-component parameters were used as references to highlight a cocrystallization process between the open-and closed-ring isomers. Moreover it was observed that the presence of the closed-ring isomer induces cooperativity in the formation of the molecular ordering of the open-ring isomer. The quantitative analysis of the ordering formation process by using a model simulation presented in this work provides a better understanding of mixing of components in a molecular ordering and photoinduced interchanges at the liquid/solid interface. (1) Sakano, T.; Imaizumi, Y.; Hirose, T.; Matsuda, K. Chem. Lett. 2013, 42, 1537. (2) Yokoyama, S.; Hirose, T.; Matsuda, K. Chem. Commun. 2014, 50, 5964. (3) Frath, D.; Sakano, T.; Imaizumi, Y.; Yokoyama, S.; Hirose, T.; Matsuda, K. Chem. Eur. J. 2015, 21, 11350

    Diarylethene Self-Assembled Monolayers: Cocrystallization and Mixing-Induced Cooperativity Highlighted by Scanning Tunneling Microscopy at the Liquid/Solid Interface

    Get PDF
    International audienceThe control over 2-D multi-component molecular orderings on surfaces is a key technology to realize advanced materials with stimuli-responsive properties. The fractional coverage (θ) at a given concentration can be determined from two parameters: the equilibrium constant (Ke) and the degree of cooperativity (σ). The parameters for the formation of self-assembled monolayer of pure diarylethene isomers were obtained by STM measurements on HOPG. These mono-component parameters were used as references to highlight a cocrystallization process between the open-and closed-ring isomers. Moreover it was observed that the presence of the closed-ring isomer induces cooperativity in the formation of the molecular ordering of the open-ring isomer. The quantitative analysis of the ordering formation process by using a model simulation presented in this work provides a better understanding of mixing of components in a molecular ordering and photoinduced interchanges at the liquid/solid interface

    Massively parallel single-cell genomics of microbiomes in rice paddies

    Get PDF
    世界初のイネ根圏微生物叢の網羅的1細胞ゲノム解析に成功 --コメ生産現場が抱える問題のデータベース化に向けて--. 京都大学プレスリリース. 2022-11-09.Plant growth-promoting microbes (PGPMs) have attracted increasing attention because they may be useful in increasing crop yield in a low-input and sustainable manner to ensure food security. Previous studies have attempted to understand the principles underlying the rhizosphere ecology and interactions between plants and PGPMs using ribosomal RNA sequencing, metagenomic sequencing, and genome-resolved metagenomics; however, these approaches do not provide comprehensive genomic information for individual species and do not facilitate detailed analyses of plant–microbe interactions. In the present study, we developed a pipeline to analyze the genomic diversity of the rice rhizosphere microbiome at single-cell resolution. We isolated microbial cells from paddy soil and determined their genomic sequences by using massively parallel whole-genome amplification in microfluidic-generated gel capsules. We successfully obtained 3, 237 single-amplified genomes in a single experiment, and these genomic sequences provided insights into microbial functions in the paddy ecosystem. Our approach offers a promising platform for gaining novel insights into the roles of microbes in the rice rhizomicrobiome and to develop microbial technologies for improved and sustainable rice production
    corecore