22 research outputs found

    Philodulcilactobacillus myokoensis gen. nov., sp. nov., a fructophilic, acidophilic, and agar-phobic lactic acid bacterium isolated from fermented vegetable extracts

    No full text
    Lactic acid bacteria are commonly in the fermentation industry and pose potential positive effects on health. In this study, a new lactic acid bacterium was isolated from fermented vegetable extracts in Myoko, Niigata, Japan. This bacterium is fructophilic, acidophilic, and hard to grow on agar medium. The isolate is Gram-stain-positive, non-spore-forming, non-motile, rod-shaped, and catalase-negative. Growth occurred at pH 3.5–5.5, with optimal growth at pH 4.5–5.0. The cells formed colonies on a solid MRS medium with 20% (w/v) sucrose and 0.8% (w/v) gellan gum under anaerobic conditions. The bacterium was able to grow on up to 50% (w/v) sucrose but not on d-glucose. Moreover, 16S rRNA gene sequence analysis revealed that the strain was most closely related to Apilactobacillus ozensis (93.1% sequence similarity). The values of average nucleotide identity, digital DNA-DNA hybridization, average amino acid sequence identity, and amino acid identity of conserved genes were calculated between the isolated strain (type strain is WR16-4T = NBRC 115064T = DSM 112857T) and its phylogenetically closest type strains. The average nucleotide identity values (73.36–78.28%) and DNA-DNA hybridization values (16.3–32.9%) were significantly lower than the threshold values for species boundaries. The average amino acid sequence identity values (53.96–60.88%) were significantly below the threshold boundary of genus demarcation (68%). The amino acid identity of conserved genes values compared to strain WR16-4T were the genera Apilactobacillus, Nicoliella spurrieriana SGEP1_A5T, Acetilactobacillus jinshanensis HSLZ-75T, and Fructilactobacillus were 62.51–63.79%, 62.87%, 62.03%, and 58.00–61.04%, respectively. The 16S rRNA gene and core genome phylogenetic trees suggested that this novel strain was most closely related to the type strain of A. jinshanensis HSLZ-75T. Based on the physiological, morphological, and phenotypical characteristics of strain WR16-4T, we propose its classification as a novel genus, Philodulcilactobacillus myokoensis gen. nov., sp. nov

    Protein Modification at Tyrosine with Iminoxyl Radicals

    No full text
    Post-translational modifications (PTMs) of proteins are a biological mechanism for reversibly controlling protein function. Synthetic protein modifications (SPMs) at specific canonical amino acids can mimic PTMs. However, reversible SPMs at hydrophobic amino acid residues in proteins are especially limited. Here we report a tyrosine (Tyr)-selective SPM utilizing persistent iminoxyl radicals, which are readily generated from sterically hindered oximes via single electron oxidation. The reactivity of iminoxyl radicals with Tyr was dependent on the steric and electronic demands of oximes; isopropyl methyl piperidinium oxime 1f formed stable adducts, whereas the reaction of tert-butyl methyl piperidinium oxime 1o was reversible. The difference in reversibility between 1f and 1o, differentiated only by one methyl group, is due to the stability of iminoxyl radicals, which is partly dictated by the bond dissociation energy of oxime O‒H groups. The Tyr-selective modifications with 1f and 1o proceeded under physiologically-relevant, mild conditions. Specifically, the stable Tyr-modification with 1f introduced functional small molecules, including an azobenzene photoswitch, to proteins, whereas the reversible modification of Tyr with 1o switched protein function on and off in an enzyme and in a monoclonal antibody by modification and deconjugation processes
    corecore