5 research outputs found

    Phenotypic and Genotypic Analysis of Antimicrobial Resistance in Escherichia coli Recovered from Feedlot Beef Cattle in Australia

    No full text
    This study investigated the antimicrobial resistance (AMR) profile of fecal Escherichia coli isolates from beef cattle (n = 150) at entry and exit from an Australian feedlot. Sample plating on MacConkey agar and Brilliance ESBL agar differentiated generic from extended-spectrum β-lactamase (ESBL)-producing E. coli, respectively. Resistance profiles were determined by minimum inhibitory concentration (MIC) testing and further analyzed by whole-genome sequencing (WGS). At entry, the prevalence of antimicrobial resistance to amoxicillin/clavulanic acid, ampicillin, streptomycin, and trimethoprim/sulfamethoxazole was very low (0.7%, each). At the exit, the resistance prevalence was moderate to tetracycline (17.8%) and low to ampicillin (5.4%), streptomycin (4.7%), and sulfisoxazole (3.9%). The most common AMR genes observed in phenotypically resistant isolates were tet(B) (43.2%), aph(3″)-Ib and aph(6)-Id (32.4%), blaTEM-1B, and sul2 (24.3%, each), which are responsible for resistance to tetracyclines, aminoglycosides, β-lactams, and sulfonamides, respectively. The ESBL-producing E. coli were recovered from one sample (0.7%) obtained at entry and six samples (4.0%) at the exit. The ESBL-producing E. coli harbored blaTEM (29.7%), blaCTX m(13.5%), and blaCMY (5.4%). The resistance phenotypes were highly correlated with resistance genotypes (r ≥ 0.85: p < 0.05). This study demonstrated that E. coli isolated from feedlot beef cattle can harbour AMR genes, but the low incidence of medically important resistance reflected the prudent antimicrobial use in the Australian industry

    Phenotypic and Genotypic Analysis of Antimicrobial Resistance in <i>Escherichia coli</i> Recovered from Feedlot Beef Cattle in Australia

    No full text
    This study investigated the antimicrobial resistance (AMR) profile of fecal Escherichia coli isolates from beef cattle (n = 150) at entry and exit from an Australian feedlot. Sample plating on MacConkey agar and Brilliance ESBL agar differentiated generic from extended-spectrum β-lactamase (ESBL)-producing E. coli, respectively. Resistance profiles were determined by minimum inhibitory concentration (MIC) testing and further analyzed by whole-genome sequencing (WGS). At entry, the prevalence of antimicrobial resistance to amoxicillin/clavulanic acid, ampicillin, streptomycin, and trimethoprim/sulfamethoxazole was very low (0.7%, each). At the exit, the resistance prevalence was moderate to tetracycline (17.8%) and low to ampicillin (5.4%), streptomycin (4.7%), and sulfisoxazole (3.9%). The most common AMR genes observed in phenotypically resistant isolates were tet(B) (43.2%), aph(3″)-Ib and aph(6)-Id (32.4%), blaTEM-1B, and sul2 (24.3%, each), which are responsible for resistance to tetracyclines, aminoglycosides, β-lactams, and sulfonamides, respectively. The ESBL-producing E. coli were recovered from one sample (0.7%) obtained at entry and six samples (4.0%) at the exit. The ESBL-producing E. coli harbored blaTEM (29.7%), blaCTX m(13.5%), and blaCMY (5.4%). The resistance phenotypes were highly correlated with resistance genotypes (r ≥ 0.85: p E. coli isolated from feedlot beef cattle can harbour AMR genes, but the low incidence of medically important resistance reflected the prudent antimicrobial use in the Australian industry

    Longitudinal Analysis of Antimicrobial Resistance among <em>Enterococcus</em> Species Isolated from Australian Beef Cattle Faeces at Feedlot Entry and Exit

    No full text
    Enterococcus faecium are commensal bacteria inhabiting the gastrointestinal tract of animals and humans and an important cause of drug-resistant nosocomial infections. This longitudinal study aimed to determine whether changes in the antimicrobial resistance (AMR) phenotype and genotype occurred among Enterococcus spp. isolated from cattle rectal samples obtained at the entry to and exit from an Australian feedlot. The samples obtained at the feedlot induction yielded enterococci (104/150; 69.3%), speciated as E. hirae (90/104; 86.5%), E. faecium (9/104; 8.7%), E. mundtii (3/104; 2.9%), E. durans, and E. casseliflavus (1/104; 1.0% each). AMR was observed to lincomycin (63/104; 60.6%), daptomycin (26/104; 25.0%), nitrofurantoin (9/104; 8.7%), ciprofloxacin (7/104; 6.7%), tetracycline (5/104; 4.8%), tigecycline (4/104; 3.9%), and quinupristin/dalfopristin (3/104; 2.9%). From the rectal swab samples collected at the abattoir from the same animals (i.e., the feedlot exit), the enterococci recovery was significantly higher (144/150; 96.0%), with a marked shift in species distribution dominated by E. faecium (117/144; 81.3%). However, the prevalence of AMR to individual antimicrobials remained largely static between the entry and exit except for the increased resistance to nitrofurantoin (77/144; 53.5%) and quinupristin/dalfopristin (26/144; 18.1%). Overall, 13 AMR genes were observed among the 62 E. faecium isolates. These included aac(6′)Ii, aac(6′)-Iid, and ant(6)-Ia (aminoglycosides); eatAv, lnu(G), vat(E), msr(C), and erm(B) (macrolides, lincosamides, and streptogramins); efmA (fluoroquinolones); and tet(45), tet(L), tet(M), and tet(S) (tetracyclines). The results confirm the presence of fluoroquinolone- and streptogramin-resistant enterococci in cattle faeces at the feedlot entry in the absence of antimicrobial selection pressure. E. faecium, exhibiting increased nitrofurantoin resistance, became the dominant Enterococcus spp. during the feeding period
    corecore