5 research outputs found
Special Libraries, January 1930
Volume 21, Issue 1https://scholarworks.sjsu.edu/sla_sl_1930/1000/thumbnail.jp
The Implementation and Review of Cognitive Remediation Training for First Episode Psychosis in Singapore
10.3389/fpsyt.2021.784935Frontiers in Psychiatry1278493
Prediction of negative symptoms of schizophrenia from emotion related low-level speech signals
Negative symptoms of schizophrenia are often associated with the blunting of emotional affect which creates a serious impediment in the daily functioning of the patients. Affective prosody is almost always adversely impacted in such cases, and is known to exhibit itself through the low-level acoustic signals of prosody. To automate and simplify the process of assessment of severity of emotion related symptoms of schizophrenia, we utilized these low-level acoustic signals to predict the expert subjective ratings assigned by a trained psychologist during an interview with the patient. Specifically, we extract acoustic features related to emotion using the openSMILE toolkit from the audio recordings of the interviews. We analysed the interviews of 78 paid participants (52 patients and 26 healthy controls) in this study. The subjective ratings could be accurately predicted from the objective openSMILE acoustic signals with an accuracy of 61-85% using machine-learning algorithms with leave-one-out cross-validation technique. Furthermore, these objective measures can be reliably utilized to distinguish between the patient and healthy groups, as supervised learning methods can classify the two groups with 79-86% accuracy.NRF (Natl Research Foundation, S’pore)NMRC (Natl Medical Research Council, S’pore)Accepted versio
Non-verbal speech cues as objective measures for negative symptoms in patients with schizophrenia.
Negative symptoms in schizophrenia are associated with significant burden and possess little to no robust treatments in clinical practice today. One key obstacle impeding the development of better treatment methods is the lack of an objective measure. Since negative symptoms almost always adversely affect speech production in patients, speech dysfunction have been considered as a viable objective measure. However, researchers have mostly focused on the verbal aspects of speech, with scant attention to the non-verbal cues in speech. In this paper, we have explored non-verbal speech cues as objective measures of negative symptoms of schizophrenia. We collected an interview corpus of 54 subjects with schizophrenia and 26 healthy controls. In order to validate the non-verbal speech cues, we computed the correlation between these cues and the NSA-16 ratings assigned by expert clinicians. Significant correlations were obtained between these non-verbal speech cues and certain NSA indicators. For instance, the correlation between Turn Duration and Restricted Speech is -0.5, Response time and NSA Communication is 0.4, therefore indicating that poor communication is reflected in the objective measures, thus validating our claims. Moreover, certain NSA indices can be classified into observable and non-observable classes from the non-verbal speech cues by means of supervised classification methods. In particular the accuracy for Restricted speech quantity and Prolonged response time are 80% and 70% respectively. We were also able to classify healthy and patients using non-verbal speech features with 81.3% accuracy