4 research outputs found
Process flow diagram of the approach taken in deriving xeno-free clinical-grade fibroblast feeders and hESCs.
<p>The scheme indicates the ethical, scientific, and regulatory steps taken in deriving our clinical-grade fibroblast feeders and hESCs.</p
Gene expression analysis of undifferentiated and differentiated progeny of the three hESC lines.
<p>Pairwise correlation of NANOG expression with that of all tested genes of the panel of HADC-100, HADC-102 and HADC-106 hESCs is presented in (A). Gene expression is presented by the DeltaCt value of each gene, normalized against the average Ct of three endogenous control genes (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0035325#pone.0035325.s013" target="_blank">Table S9</a>). The Pearson correlation coefficient was calculated from the combined data of DeltaCt values of undifferentiated and differentiated hESCs of the three lines. The results were plotted in descending order of the correlation coefficient values. Clustering analysis of genes that were differentially expressed in the three lines in the undifferentiated and differentiated state is presented in (B). An unpaired t-test for differential gene expression between undifferentiated and differentiated samples yielded 35 genes with a P- value <0.05. Two-way hierarchical clustering with Euclidean distance was performed on the 35 genes and six samples. Green colors in the heat map represent low DeltaCt or high expression. Red colors represent high DeltaCt or low expression.</p
Characterization of HAD-C 100 1° cell bank.
<p>The hESCs colonies had the typical morphology of human pluripotent stem cell colonies with clear distinguishable borders from the cord feeder cells (A; phase-contrast image). The cells expressed alkaline phosphatase (B; AP, fluorescence image). Indirect immunofluorescence staining showed that the hESCs were immunoreactive with anti-Oct-4 (C; nuclei counterstained with DAPI, D), TRA-1-60 (E), TRA-1-81 (F), SSEA-3 (G), and SSEA-4 (H). FACS analysis showed that the majority of cells expressed markers of pluripotency TRA-1-60 (I), TRA-1-81 (J) and SSEA-3 (K) (Data from a representative experiment). The hESCs had normal karyotype (46, XY; L) and could differentiate <i>in vitro</i> and <i>in vivo</i> into cells representing the three embryonic germ layers (M-R). Immunofluorescence staining showing <i>in vitro</i> differentiated cells expressing beta-tubulin III (ectoderm, M), muscle actin (mesoderm, N) and sox-17 (endoderm, O). Hematoxylin-eosin stained histological sections of teratoma tumors showing neural rosettes (ectoderm, P), cartilage (mesoderm, Q) and villi structures with columnar glandular epithelium and goblet cells (endoderm, R). Scale bar represent 50 um for (A, B, Q and R), 100 um for (C, D, M, N, O and P) and 200 um for (E–H).</p
Characterization of human feeders.
<p>Human feeders derived from three types of human tissues showed similar properties. They were immunoreactive with anti-vimentin (A; immunostaining, nuclei counterstained with 4', 6-diamidino-2-phenylindole (DAPI)), CD44 and human Fibroblast antigens (B; FACS analysis). They had similar doubling times (C) and normal karyotypes (D). γ-irradiated cord feeders (WCB2) were mitotically inactive as indicated by lack of KI-67 expression and BrdU incorporation (E; immunostaining (green), nuclei counterstained with DAPI (blue)). Mitomycin-C treated and mitotically-active non-treated feeders served as negative and positive controls, respectively. (B & C present analysis of three lines from each feeder type).</p