372 research outputs found

    Hyper-Restormer: A General Hyperspectral Image Restoration Transformer for Remote Sensing Imaging

    Full text link
    The deep learning model Transformer has achieved remarkable success in the hyperspectral image (HSI) restoration tasks by leveraging Spectral and Spatial Self-Attention (SA) mechanisms. However, applying these designs to remote sensing (RS) HSI restoration tasks, which involve far more spectrums than typical HSI (e.g., ICVL dataset with 31 bands), presents challenges due to the enormous computational complexity of using Spectral and Spatial SA mechanisms. To address this problem, we proposed Hyper-Restormer, a lightweight and effective Transformer-based architecture for RS HSI restoration. First, we introduce a novel Lightweight Spectral-Spatial (LSS) Transformer Block that utilizes both Spectral and Spatial SA to capture long-range dependencies of input features map. Additionally, we employ a novel Lightweight Locally-enhanced Feed-Forward Network (LLFF) to further enhance local context information. Then, LSS Transformer Blocks construct a Single-stage Lightweight Spectral-Spatial Transformer (SLSST) that cleverly utilizes the low-rank property of RS HSI to decompose the feature maps into basis and abundance components, enabling Spectral and Spatial SA with low computational cost. Finally, the proposed Hyper-Restormer cascades several SLSSTs in a stepwise manner to progressively enhance the quality of RS HSI restoration from coarse to fine. Extensive experiments were conducted on various RS HSI restoration tasks, including denoising, inpainting, and super-resolution, demonstrating that the proposed Hyper-Restormer outperforms other state-of-the-art methods

    The Effect of Storage Condition on Biodiesel

    Get PDF

    RNA interference of argininosuccinate synthetase restores sensitivity to recombinant arginine deiminase (rADI) in resistant cancer cells

    Get PDF
    Background Sensitivity of cancer cells to recombinant arginine deiminase (rADI) depends on expression of argininosuccinate synthetase (AS), a rate- limiting enzyme in synthesis of arginine from citrulline. To understand the efficiency of RNA interfering of AS in sensitizing the resistant cancer cells to rADI, the down regulation of AS transiently and permanently were performed in vitro, respectively. Methods We studied the use of down-regulation of this enzyme by RNA interference in three human cancer cell lines (A375, HeLa, and MCF-7) as a way to restore sensitivity to rADI in resistant cells. The expression of AS at levels of mRNA and protein was determined to understand the effect of RNA interference. Cell viability, cell cycle, and possible mechanism of the restore sensitivity of AS RNA interference in rADI treated cancer cells were evaluated. Results AS DNA was present in all cancer cell lines studied, however, the expression of this enzyme at the mRNA and protein level was different. In two rADI-resistant cell lines, one with endogenous AS expression (MCF-7 cells) and one with induced AS expression (HeLa cells), AS small interference RNA (siRNA) inhibited 37-46% of the expression of AS in MCF- 7 cells. ASsiRNA did not affect cell viability in MCF-7 which may be due to the certain amount of residual AS protein. In contrast, ASsiRNA down- regulated almost all AS expression in HeLa cells and caused cell death after rADI treatment. Permanently down-regulated AS expression by short hairpin RNA (shRNA) made MCF-7 cells become sensitive to rADI via the inhibition of 4E-BP1-regulated mTOR signaling pathway. Conclusions Our results demonstrate that rADI-resistance can be altered via AS RNA interference. Although transient enzyme down- regulation (siRNA) did not affect cell viability in MCF-7 cells, permanent down- regulation (shRNA) overcame the problem of rADI-resistance due to the more efficiency in AS silencing

    Synthesis and Characterization of Two-Dimensional Conjugated Polymers Incorporating Electron-Deficient Moieties for Application in Organic Photovoltaics

    Get PDF
    A series of novel p-type conjugated copolymers, PTTVBDT, PTTVBDT-TPD, and PTTVBDT-DPP, cooperating benzo[1,2-b:4,5-b′]dithiophene (BDT) and terthiophene-vinylene (TTV) units with/without thieno[3,4-c]pyrrole-4,6-dione (TPD) or pyrrolo[3,4-c]pyrrole-1,4-dione (DPP) via Stille polymerization were synthesized and characterized. Copolymer PTTVBDT shows a low-lying HOMO energy level and ordered molecular-packing behavior. Furthermore, two terpolymers, PTTVBDT-TPD and PTTVBDT-DPP, display stronger absorption ability, alower-lying HOMO energy level, and preferred molecular orientation, due to the replacement TTV-monomer units with electron-deficient groups. Furthermore, bulk-heterojunction organic solar cells were fabricated using blends of the PTTVBDT-TPD, and PC_(61)BM gave the best power conversion efficiency of 5.01% under the illumination of AM 1.5G, 100 mW·cm^(−2); the short circuit current (J_(sc)) was 11.65 mA·cm^(−2) which displayed a 43.8% improvement in comparison with the PTTVBDT/PC_(61)BM device. These results demonstrate a valid strategy combining the two-dimensional molecular structure with random copolymerization strikes promising conjugated polymers to achieve highly efficient organic photovoltaics
    corecore