31 research outputs found

    Hospital Variation in Time to Endovascular Treatment for Ischemic Stroke:What Is the Optimal Target for Improvement?

    Get PDF
    Background Time to reperfusion in patients with ischemic stroke is strongly associated with functional outcome and may differ between hospitals and between patients within hospitals. Improvement in time to reperfusion can be guided by between-hospital and within-hospital comparisons and requires insight in specific targets for improvement. We aimed to quantify the variation in door-to-reperfusion time between and within Dutch intervention hospitals and to assess the contribution of different time intervals to this variation. Methods and Results We used data from the MR CLEAN (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands) Registry. The door-to-reperfusion time was subdivided into time intervals, separately for direct patients (door-to-computed tomography, computed tomography-to-computed tomography angiography [CTA], CTA-to-groin, and groin-to-reperfusion times) and for transferred patients (door-to-groin and groin-to-reperfusion times). We used linear mixed models to distinguish the variation in door-to-reperfusion time between hospitals and between patients. The proportional change in variance was used to estimate the amount of variance explained by each time interval. We included 2855 patients of 17 hospitals providing endovascular treatment. Of these patients, 44% arrived directly at an endovascular treatment hospital. The between-hospital variation in door-to-reperfusion time was 9%, and the within-hospital variation was 91%. The contribution of case-mix variables on the variation in door-to-reperfusion time was marginal (2%-7%). Of the between-hospital variation, CTA-to-groin time explained 83%, whereas groin-to-reperfusion time explained 15%. Within-hospital variation was mostly explained by CTA-to-groin time (33%) and groin-to-reperfusion time (42%). Similar results were found for transferred patients. Conclusions Door-to-reperfusion time varies between, but even more within, hospitals providing endovascular treatment for ischemic stroke. Quality of stroke care improvements should not only be guided by between-hospital comparisons, but also aim to reduce variation between patients within a hospital, and should specifically focus on CTA-to-groin time and groin-to-reperfusion time

    Thrombus Migration Paradox in Patients With Acute Ischemic Stroke

    Get PDF
    Background and Purpose- The location of the thrombus as observed on first digital subtraction angiography during endovascular treatment may differ from the initial observation on initial noninvasive imaging. We studied the incidence of thrombus dynamics, its impact on patient outcomes, and its association with intravenous thrombolytics. Methods- We included patients from the MR CLEAN registry (Multicenter Randomized Clinical Trial of Endovascular Treatment of Acute Ischemic Stroke) with an initial target occlusion on computed tomography angiography located in the intracranial internal carotid artery, M1, or M2. The conventional angiography target occlusion was defined during endovascular treatment. Thrombus dynamics were classified as growth, stability, migration, and resolution. The primary outcome was functional outcome at 90 days (modified Rankin Scale). The secondary outcomes were successful and complete reperfusion (extended treatment in cerebral infarction scores of 2b-3 and 3, respectively). Results- The analysis included 1349 patients. Thrombus migration occurred in 302 (22%) patients, thrombus growth in 87 (6%), and thrombus resolution in 39 (3%). Intravenous treatment with alteplase was associated with more thrombus migration (adjusted odds ratio, 2.01; CI, 1.29-3.11) and thrombus resolution (adjusted odds ratio, 1.85; CI, 1.22-2.80). Thrombus migration was associated with a lower chance of complete reperfusion (adjusted odds ratio, 0.57; CI, 0.42-0.78) and successful reperfusion (adjusted odds ratio, 0.74; CI, 0.55-0.99). In the subgroup of patients with M1 initial target occlusion, thrombus migration was associated with better functional outcome (adjusted common odds ratio, 1.49; CI, 1.02-2.17), and there was a trend towards better functional outcome in patients with thrombus resolution (adjusted common odds ratio, 2.23; CI, 0.93-5.37). Conclusions- In patients with acute ischemic stroke, thrombus location regularly changes between computed tomography angiography and digital subtraction angiography. Administration of intravenous alteplase increases the chance of thrombus migration and resolution. Thrombus migration is associated with better functional outcome but reduces the rate of complete reperfusion

    Acute Endovascular Treatment of Patients With lschemic Stroke From Intracranial Large Vessel Occlusion and Extracranial Carotid Dissection

    Get PDF
    Introduction: Carotid artery dissection (CAD) and atherosclerotic carotid artery occlusion (ACAO) are major causes of a tandem occlusion in patients with intracranial large vessel occlusion (LVO). Presence of tandem occlusions may hamper intracranial access and potentially increases the risk of procedural complications of endovascular treatment (EVT). Our aim was to assess neurological, functional and technical outcome and complications of EVT for intracranial LVO in patients with CAD in comparison to patients with ACAO and to patients without CAD or ACAO. Methods: We analyzed data of the MR CLEAN trial intervention arm and MR CLEAN Registry, acquired in 16 Dutch EVT-centers. Primary outcome was the change in stroke severity by comparing the National Institute of Health Stroke Scale (NIHSS) score at 24-48 h after treatment vs. baseline. Secondary outcomes included reperfusion rate and symptomatic intracranial hemorrhage (sICH). We compared outcomes and complications between patients with CAD vs. patients with ACAO and patients without CAD or ACAO. Results: In total, we identified 74 (4.7%) patients with CAD, 92 (5.9%) patients with ACAO and 1398 (89.4%) patients without CAD or ACAO. Neurological improvement at short-term after EVT in patients with CAD was significantly better compared to ACAO (raw mean -5 vs. mean -1 NIHSS point; p = 0.03) and did not differ compared to patients without CAD or ACAO (-4 NIHSS points; p = 0.62). Rates of successful reperfusion in patients with CAD (47%) was comparable to patients with ACAO (47%; p = 1.00), but was less often achieved compared to patients without CAD or ACAO (58%; p = 0.08). Occurrence of sICH did not differ significantly between CAD patients (5%) and ACAO (11%; p = 0.33) or without CAD/ACAO (6%; p = 1.00). Conclusion: EVT in patients with intracranial LVO due to CAD results in neurological improvement comparable to patients without tandem occlusions. Therefore, carotid artery dissection by itself should not be a contraindication for endovascular treatment in stroke patients with intracranial large vessel occlusion. Although more challenging endovascular procedures are to be suspected in both patients with CAD or ACAO, accurate distinction between CAD and ACAO might influence clinical decision making as better clinical outcome can be expected in patients with CAD

    Thrombus imaging characteristics within acute ischemic stroke:similarities and interdependence

    Get PDF
    BACKGROUND: The effects of thrombus imaging characteristics on procedural and clinical outcomes after ischemic stroke are increasingly being studied. These thrombus characteristics - for eg, size, location, and density - are commonly analyzed as separate entities. However, it is known that some of these thrombus characteristics are strongly related. Multicollinearity can lead to unreliable prediction models. We aimed to determine the distribution, correlation and clustering of thrombus imaging characteristics based on a large dataset of anterior-circulation acute ischemic stroke patients.METHODS: We measured thrombus imaging characteristics in the MR CLEAN Registry dataset, which included occlusion location, distance from the intracranial carotid artery to the thrombus (DT), thrombus length, density, perviousness, and clot burden score (CBS). We assessed intercorrelations with Spearman's coefficient (ρ) and grouped thrombi based on 1) occlusion location and 2) thrombus length, density and perviousness using unsupervised clustering.RESULTS: We included 934 patients, of which 22% had an internal carotid artery (ICA) occlusion, 61% M1, 16% M2, and 1% another occlusion location. All thrombus characteristics were significantly correlated. Higher CBS was strongly correlated with longer DT (ρ=0.67, p&lt;0.01), and moderately correlated with shorter thrombus length (ρ=-0.41, p&lt;0.01). In more proximal occlusion locations, thrombi were significantly longer, denser, and less pervious. Unsupervised clustering analysis resulted in four thrombus groups; however, the cohesion within and distinction between the groups were weak.CONCLUSIONS: Thrombus imaging characteristics are significantly intercorrelated - strong correlations should be considered in future predictive modeling studies. Clustering analysis showed there are no distinct thrombus archetypes - novel treatments should consider this thrombus variability.</p

    Value of Automatically Derived Full Thrombus Characteristics:An Explorative Study of Their Associations with Outcomes in Ischemic Stroke Patients

    Get PDF
    (1) Background: For acute ischemic strokes caused by large vessel occlusion, manually assessed thrombus volume and perviousness have been associated with treatment outcomes. However, the manual assessment of these characteristics is time-consuming and subject to inter-observer bias. Alternatively, a recently introduced fully automated deep learning-based algorithm can be used to consistently estimate full thrombus characteristics. Here, we exploratively assess the value of these novel biomarkers in terms of their association with stroke outcomes. (2) Methods: We studied two applications of automated full thrombus characterization as follows: one in a randomized trial, MR CLEAN-NO IV (n = 314), and another in a Dutch nationwide registry, MR CLEAN Registry (n = 1839). We used an automatic pipeline to determine the thrombus volume, perviousness, density, and heterogeneity. We assessed their relationship with the functional outcome defined as the modified Rankin Scale (mRS) at 90 days and two technical success measures as follows: successful final reperfusion, which is defined as an eTICI score of 2b-3, and successful first-pass reperfusion (FPS). (3) Results: Higher perviousness was significantly related to a better mRS in both MR CLEAN-NO IV and the MR CLEAN Registry. A lower thrombus volume and lower heterogeneity were only significantly related to better mRS scores in the MR CLEAN Registry. Only lower thrombus heterogeneity was significantly related to technical success; it was significantly related to a higher chance of FPS in the MR CLEAN-NO IV trial (OR = 0.55, 95% CI: 0.31–0.98) and successful reperfusion in the MR CLEAN Registry (OR = 0.88, 95% CI: 0.78–0.99). (4) Conclusions: Thrombus characteristics derived from automatic entire thrombus segmentations are significantly related to stroke outcomes.</p

    Cerebrospinal fluid volume improves prediction of malignant edema after endovascular treatment of stroke

    No full text
    Background: The ratio of intracranial cerebrospinal fluid (CSF) volume to intracranial volume (ICV) has been identified as a potential predictor of malignant edema formation in patients with acute ischemic stroke. Aims: We aimed to evaluate the added value of the CSF/ICV ratio in a model to predict malignant edema formation in patients who underwent endovascular treatment. Methods: We included patients from the MR CLEAN Registry, a prospective national multicenter registry of patients who were treated with endovascular treatment between 2014 and 2017 because of acute ischemic stroke caused by large vessel occlusion. The CSF/ICV ratio was automatically measured on baseline thin-slice noncontrast CT. The primary outcome was the occurrence of malignant edema based on clinical and imaging features. The basic model included the following predictors: age, National Institutes of Health Stroke Scale, Alberta Stroke Program Early CT score, occlusion of the internal carotid artery, collateral score, time between symptom onset and groin puncture, and unsuccessful reperfusion. The extended model included the basic model and the CSF/ICV ratio. The performance of the basic and the extended model was compared with the likelihood ratio test. Results: Malignant edema occurred in 40 (6%) of 683 patients. In the extended model, a lower CSF/ICV ratio was associated with the occurrence of malignant edema (odds ratio (OR) per percentage point, 1.2; 95% confidence interval (CI) 1.1–1.3, p < 0.001). Age lost predictive value for malignant edema in the extended model (OR 1.1; 95% CI 0.9–1.5, p = 0.372). The performance of the extended model was higher than that of the basic model (p < 0.001). Conclusions: Adding the CSF/ICV ratio improves a multimodal prediction model for the occurrence of malignant edema after endovascular treatment

    Cerebrospinal fluid volume improves prediction of malignant edema after endovascular treatment of stroke

    Get PDF
    Background: The ratio of intracranial cerebrospinal fluid (CSF) volume to intracranial volume (ICV) has been identified as a potential predictor of malignant edema formation in patients with acute ischemic stroke. Aims: We aimed to evaluate the added value of the CSF/ICV ratio in a model to predict malignant edema formation in patients who underwent endovascular treatment. Methods: We included patients from the MR CLEAN Registry, a prospective national multicenter registry of patients who were treated with endovascular treatment between 2014 and 2017 because of acute ischemic stroke caused by large vessel occlusion. The CSF/ICV ratio was automatically measured on baseline thin-slice noncontrast CT. The primary outcome was the occurrence of malignant edema based on clinical and imaging features. The basic model included the following predictors: age, National Institutes of Health Stroke Scale, Alberta Stroke Program Early CT score, occlusion of the internal carotid artery, collateral score, time between symptom onset and groin puncture, and unsuccessful reperfusion. The extended model included the basic model and the CSF/ICV ratio. The performance of the basic and the extended model was compared with the likelihood ratio test. Results: Malignant edema occurred in 40 (6%) of 683 patients. In the extended model, a lower CSF/ICV ratio was associated with the occurrence of malignant edema (odds ratio (OR) per percentage point, 1.2; 95% confidence interval (CI) 1.1–1.3, p < 0.001). Age lost predictive value for malignant edema in the extended model (OR 1.1; 95% CI 0.9–1.5, p = 0.372). The performance of the extended model was higher than that of the basic model (p < 0.001). Conclusions: Adding the CSF/ICV ratio improves a multimodal prediction model for the occurrence of malignant edema after endovascular treatment

    Microcatheter tracking in thrombectomy procedures: A finite-element simulation study

    No full text
    Background and objective: Mechanical thrombectomy is a minimally invasive procedure that aims at removing the occluding thrombus from the vasculature of acute ischemic stroke patients. Thrombectomy success and failure can be studied using in-silico thrombectomy models. Such models require realistic modeling steps to be effective. We here present a new approach to model microcatheter tracking during thrombectomy. Methods: For 3 patient-specific vessel geometries, we performed finite-element simulations of the microcatheter tracking (1) following the vessel centerline (centerline method) and (2) as a one-step insertion simulation, where the microcatheter tip was advanced along the vessel centerline while its body was free to interact with the vessel wall (tip-dragging method). Qualitative validation of the two tracking methods was performed with the patient's digital subtraction angiography (DSA) images. In addition, we compared simulated thrombectomy outcomes (successful vs unsuccessful thrombus retrieval) and maximum principal stresses on the thrombus between the centerline and tip-dragging method. Results: Qualitative comparison with the DSA images showed that the tip-dragging method more realistically resembles the patient-specific microcatheter-tracking scenario, where the microcatheter approaches the vessel walls. Although the simulated thrombectomy outcomes were similar in terms of thrombus retrieval, the thrombus stress fields (and the associated fragmentation of the thrombus) were strongly different between the two methods, with local differences in the maximum principal stress curves up to 84%. Conclusions: Microcatheter positioning with respect to the vessel affects the stress fields of the thrombus during retrieval, and therefore, may influence thrombus fragmentation and retrieval in-silico thrombectomy

    Value of CT Perfusion for Collateral Status Assessment in Patients with Acute Ischemic Stroke

    Get PDF
    Good collateral status in acute ischemic stroke patients is an important indicator for good outcomes. Perfusion imaging potentially allows for the simultaneous assessment of local perfusion and collateral status. We combined multiple CTP parameters to evaluate a CTP-based collateral score. We included 85 patients with a baseline CTP and single-phase CTA images from the MR CLEAN Registry. We evaluated patients' CTP parameters, including relative CBVs and tissue volumes with several time-to-maximum ranges, to be candidates for a CTP-based collateral score. The score candidate with the strongest association with CTA-based collateral score and a 90-day mRS was included for further analyses. We assessed the association of the CTP-based collateral score with the functional outcome (mRS 0-2) by analyzing three regression models: baseline prognostic factors (model 1), model 1 including the CTA-based collateral score (model 2), and model 1 including the CTP-based collateral score (model 3). The model performance was evaluated using C-statistic. Among the CTP-based collateral score candidates, relative CBVs with a time-to-maximum of 6-10 s showed a significant association with CTA-based collateral scores (p = 0.02) and mRS (p = 0.05) and was therefore selected for further analysis. Model 3 most accurately predicted favorable outcomes (C-statistic = 0.86, 95% CI: 0.77-0.94) although differences between regression models were not statistically significant. We introduced a CTP-based collateral score, which is significantly associated with functional outcome and may serve as an alternative collateral measure in settings where MR imaging is not feasible
    corecore