19 research outputs found

    The influence of subsurface architecture on scour hole formation in the Rhine–Meuse delta, the Netherlands

    Get PDF
    Scour holes are common features in deltaic rivers which can destabilise embankments through oversteepening of the river bed. Their development has been studied extensively from the hydraulic perspective, but another important control is the erodibility of the river bed which varies considerably due to thickening of heterogeneous deltaic substrate towards the coast. Therefore, we assessed the influence of delta-scale geological heterogeneity and local subsurface architecture on scour hole formation in addition to the hydrodynamic controls. We (1) created an inventory of 165 scour hole locations in the Rhine–Meuse delta, (2) assessed the hydrodynamic conditions at the locations, (3) extracted geometric characteristics and (4) determined the subsurface architecture from geological data. Central and lower delta branches have 0.6–0.7 scours per km while upper delta branches have less than 0.2. Downstream, 58% of scour holes were related to architectural elements, notably sand bodies from former Holocene channel belts and Early Holocene cohesive beds. These scours have steeper slopes due to higher proportions of cohesive sediments near the river bed. Furthermore, scours related to channel belt sand bodies are limited in downstream length and depth, up to maximum of approximately two times the water depth. From our results, we provide a delta-scale explanatory framework that relates the position of present-day river channels with respect to Pleistocene river deposits and Holocene fluvio-deltaic deposits to scour hole formation. Upstream rivers are incised in Pleistocene deposits showing less local variation in erodibility. The majority of scour holes here relate to engineering works. In central and lower delta branches, geologically inherited heterogeneity of the Holocene substrate at critical depths near the channel bottom adds to anthropogenic induced scours and results in high abundances. This demonstrates that downstream variation in subsurface architecture should be considered as a key control on scour locations and characteristics for management purposes

    Potenties voor herstel getijdenatuur in het Haringvliet, Hollands Diep en de Biesbosch

    Get PDF
    In verband met de verwachte positieve effecten op de natuur, met name het herstel van vismigratie, gaan vanaf 2018 de Haringvlietsluizen op een kier. Als gevolg van deze aanpassing kan er tijdens vloed zoutwater binnendringen in het westelijk deel van het Haringvliet. Het verder openzetten van de Haringvlietsluizen dan alleen op een kier, biedt ook de mogelijkheid voor meer getijdynamiek in het Haringvliet, maar ook verder landinwaarts, het Hollands Diep en de Biesbosch, waardoor er meer intergetijdengebied ontstaat. In deze studie is een verkenning gedaan naar de mogelijkheden van het herstel van getijdenatuur in het Haringvliet, Hollands Diep en de Biesbosch. In deze studie zijn vijf varianten doorgerekend: (1) Huidig beheer, (2) Kierbesluit, (3) 80 cm getij, (4) Stormvloedkering en (5) Klimaatscenario (met stormvloedkering)

    Direct Visualization of Laser-Driven Electron Multiple Scattering and Tunneling Distance in Strong-Field Ionization

    Get PDF
    Using a simple model of strong-field ionization of atoms that generalizes the well-known 3-step model from 1D to 3D, we show that the experimental photoelectron angular distributions resulting from laser ionization of xenon and argon display prominent structures that correspond to electrons that pass by their parent ion more than once before strongly scattering. The shape of these structures can be associated with the specific number of times the electron is driven past its parent ion in the laser field before scattering. Furthermore, a careful analysis of the cutoff energy of the structures allows us to experimentally measure the distance between the electron and ion at the moment of tunnel ionization. This work provides new physical insight into how atoms ionize in strong laser fields and has implications for further efforts to extract atomic and molecular dynamics from strong-field physics

    Climate Change Induced Salinization of Drinking Water Inlets along a Tidal Branch of the Rhine River: Impact Assessment and an Adaptive Strategy for Water Resources Management

    Full text link
    This study presents the results of an impact analysis of climate change on salinization and the long-term availability of drinking water resources along the river Lek, a tidal branch of the Rhine delta, and a potential mitigation measure. To this end, a one-dimensional modelling approach was used that enabled studying 50 years of variation in discharge and tide in current and future climate. It was found that all locations are increasingly vulnerable to salt intrusion caused by the combination of sea level rise and decreasing river discharges. This affects both the yearly average chloride concentration and long duration exceedances of the threshold value of 150 mg/L. It was also found that diverting a higher fresh water discharge to the Lek of several tens of cubic meters per second reduces the risk of salinization at the upstream inlet locations. However, the increased influence of seawater intrusion on the drinking water inlets cannot be fully compensated for by this measure. The potential gain of the extra water for the drinking water inlets along the Lek has to be balanced against the impact of this measure on water levels and stream flows in other parts of the river system

    Lithological control on scour hole formation in the Rhine-Meuse Estuary

    Get PDF
    River deltas commonly have a heterogeneous substratum of alternating peat, clay and sand deposits. This has important consequences for the river bed development and in particular for scour hole formation. When the substratum consists of an erosion resistant top layer, erosion is retarded. Upon breaking through a resistant top layer and reaching an underlying layer with higher erodibilty, deep scour holes may form within a short amount of time. The unpredictability and fast development of these scour holes makes them difficult to manage, particularly where the stability of dikes and infrastructure is at stake. In this paper we determine how subsurface lithology controls the bed elevation in net incising river branches, particularly focusing on scour hole initiation, growth rate, and direction. For this, the Rhine-Meuse Estuary forms an ideal study site, as over 100 scour holes have been identified in this area, and over 40 years of bed level data and thousands of core descriptions are available. It is shown that the subsurface lithology plays a crucial role in the emergence, shape, and evolution of scour holes. Although most scour holes follow the characteristic exponential development of fast initial growth and slower final growth, strong temporal variations are observed, with sudden growth rates of several meters per year in depth and tens of meters in extent. In addition, we relate the characteristic build-up of the subsurface lithology to specific geometric characteristics of scour holes, like large elongated expanding scour holes or confined scour holes with steep slopes. As river deltas commonly have a heterogeneous substratum and often face channel bed erosion, the observations likely apply to many delta rivers. These findings call for thorough knowledge of the subsurface lithology, as without it, scour hole development is hard to predict and can lead to sudden failures of nearby infrastructure and flood defence works

    Development of intertidal flats in the Dutch Wadden Sea in response to a rising sea level: Spatial differentiation and sensitivity to the rate of sea level rise

    Full text link
    The Wadden Sea is a unique intertidal wetland area, forming an important hub for migratory water birds. A feared effect of accelerated sea-level rise (SLR) is the gradual loss or even disappearance of the ecologically valuable intertidal flats. To date, the effect of SLR on the time-evolution of the intertidal areas in the Dutch Wadden Sea has not been studied. To explore the sensitivity of the intertidal flats to SLR and the spatial differentiation of the response, simulations are carried out with the reduced-complexity model ASMITA for four sea level rise scenarios: one with a stable rate of 2 mm/yr (current rate), and three with accelerated sea level rise rates to respectively 4, 6 and 8 mm/yr. In addition, a scenario with a linearly increasing rate to 17 mm/yr in 2100 has been added to get an impression of what may happen under more extreme SLR-rates. The results show that the intertidal flats in the larger basins are most vulnerable to drowning. Due to differences in tidal flat geometry, the intertidal flats in the smaller basins mainly reduce in average height, while the intertidal flats in the larger basins mainly reduce in surface area. Within the basins, largest losses are expected to occur just off the land reclamation works and along the western part of each tidal watershed. The intertidal flats are sensitive to the rate of SLR. With doubling the rate of SLR, losses nearly double as well. Complete drowning is not predicted for any of the considered scenarios, but for the larger basins volume losses of nearly 50% by 2100 are predicted for the highest considered scenario. This will transform these basins into more lagoon-like basins, which is expected to have major consequences for the ecology

    Lithological control on scour hole formation in the Rhine-Meuse Estuary

    Get PDF
    River deltas commonly have a heterogeneous substratum of alternating peat, clay and sand deposits. This has important consequences for the river bed development and in particular for scour hole formation. When the substratum consists of an erosion resistant top layer, erosion is retarded. Upon breaking through a resistant top layer and reaching an underlying layer with higher erodibilty, deep scour holes may form within a short amount of time. The unpredictability and fast development of these scour holes makes them difficult to manage, particularly where the stability of dikes and infrastructure is at stake. In this paper we determine how subsurface lithology controls the bed elevation in net incising river branches, particularly focusing on scour hole initiation, growth rate, and direction. For this, the Rhine-Meuse Estuary forms an ideal study site, as over 100 scour holes have been identified in this area, and over 40 years of bed level data and thousands of core descriptions are available. It is shown that the subsurface lithology plays a crucial role in the emergence, shape, and evolution of scour holes. Although most scour holes follow the characteristic exponential development of fast initial growth and slower final growth, strong temporal variations are observed, with sudden growth rates of several meters per year in depth and tens of meters in extent. In addition, we relate the characteristic build-up of the subsurface lithology to specific geometric characteristics of scour holes, like large elongated expanding scour holes or confined scour holes with steep slopes. As river deltas commonly have a heterogeneous substratum and often face channel bed erosion, the observations likely apply to many delta rivers. These findings call for thorough knowledge of the subsurface lithology, as without it, scour hole development is hard to predict and can lead to sudden failures of nearby infrastructure and flood defence works

    Discrepancies in Flood Modelling Approaches in Transboundary River Systems : Legacy of the Past or Well-grounded Choices?

    Full text link
    Flood modelling in transnational rivers requires efficient cross-border collaboration among the riparian countries. Currently, each country/region usually uses a different hydraulic modelling approach, which may hinder the modelling of the entire river. For the sake of accurate and consistent river modelling there is a necessity for the establishment of a framework that fosters international collaborations. This study investigates the current hydraulic modelling approach across the whole length of the River Meuse, the main course of which crosses three North-western European countries. The numerical models used by French, Belgian, and Dutch agencies and authorities were interconnected by exchanging boundary conditions at the borders. At the central part of the river, the Belgian hydraulic model assumed steady flow conditions, while the rest of the river was modelled in unsteady mode. Results for various flood scenarios revealed a distinctive pattern of water depths at the Belgian-Dutch border. To clarify whether this is a bias induced by the change in modelling approach at the border (steady vs. unsteady), we remodelled a stretch of the river across the Belgian-Dutch border using a consistent unsteady modelling approach. The steady and unsteady approaches led to similar patterns across the border, hence discarding the hypothesis of a bias resulting from a change in the employed model. Instead, the pattern in water depths was attributed to a change in the topography of the Meuse Valley, where there is a transition from a narrow steep corridor with limited water storing capacity in Ardennes massif to wide floodplains in the Dutch lowlands. The associated flood damping for the 100-year discharge is less than 1 % in the Ardennes and exceeds 15 % in the Dutch lowlands. It can be inferred that the current differences in regional hydraulic modelling approaches for the River Meuse are generally well-grounded and not just a legacy of the past.AMIC

    Peak Water Levels Rise Less Than Mean Sea Level in Tidal Channels Subject to Depth Convergence by Deepening

    Full text link
    Effects of sea-level rise (SLR) on future peak water levels in tidal deltas and estuaries are largely unknown, despite these areas being densely populated and at high risk of flooding. While the rates of SLR accelerate, many channels simultaneously experience channel deepening for navigation. With globally decreasing sediment supplies, most channels are at risk of becoming deeper when the rate of SLR accelerates and sedimentation cannot keep pace with SLR. These factors potentially favor amplification of the tides and thereby increase flood risk, but the extent to which they will do so is unknown. Here, we introduce and use a validated model for an artificially deepened multi-branch delta to get a mechanistic understanding of non-linear SLR-effects on peak water levels. Results show that, when the current deepened bed level will be maintained, peak water levels do not rise on par with mean sea-level. Thus flood risk increases less than what can be expected from the predictions of the mean sea-level increase. The reason is that SLR causes a proportional reduction in convergence of channel area. This mechanism reduces tidal amplification. Nevertheless, SLR effects extend far beyond the range of present-day seasonal variations, with future low water levels being equal to present-day high water levels, while the tidal range slightly reduces. This will have consequences not only for flood risk, but also for freshwater availability, navigation and ecology
    corecore