12 research outputs found

    Mechanisms and Consequences of Chromosomal Instability in Malignant tumours

    Get PDF
    In this thesis, telomere deficiency with subsequent anaphase bridging was found to be associated with chromosomal instability in established colorectal cancer cell lines and in Wilms tumour. In colorectal cancer cell lines, anaphase bridging was observed to generate both numerical and structural chromosomal aberrations and was also associated with the presence of multipolar mitoses. In contrast to cells having undergone anaphase bridging, daughter cells from these multipolar mitotic figures were observed not to form clones in culture, possibly because of the severe aneuploidy which is the result of multipolar mitosis. Chromosomal instability was observed also in colorectal cancer cell lines with mutations in the mismatch repair genes. In Wilms tumour, chromosomal instability was found to be associated with an aggressive tumour phenotype and poor survival. Telomere shortening was more pronounced in the immature tumour components, which could explain the fact that anaphase bridges and multipolar mitoses were only observed in these tumour elements. Because of breakage-fusion-bridge cycles, chromosomal instability is associated with karyotypes with extensive structural chromosomal rearrangements. By applying a combination of subtelomeric FISH, G-banding and multicolour FISH, a high resolution for cytogenetic analysis of tumours with chromosomal instability could be obtained. This combined approached was used also to search for reciprocal translocations leading to fusion genes in Wilms tumour. Although the technique proved efficient, no recurrent reciprocal translocation was found in Wilms tumour. Our results indicate that telomere dependent chromosomal instability is present in both colorectal cancer and Wilms tumour and could be an important prognostic factor in Wilms tumours

    Euploidy in somatic cells from R6/2 transgenic Huntington's disease mice

    Get PDF
    BACKGROUND: Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by a CAG repeat expansion in the HD gene. The huntingtin protein expressed from HD has an unknown function but is suggested to interact with proteins involved in the cell division machinery. The R6/2 transgenic mouse is the most widely used model to study HD. In R6/2 fibroblast cultures, a reduced mitotic index and high frequencies of multiple centrosomes and aneuploid cells have recently been reported. Aneuploidy is normally a feature closely connected to neoplastic disease. To further explore this unexpected aspect of HD, we studied cultures derived from 6- and 12-week-old R6/2 fibroblasts, skeletal muscle cells, and liver cells. RESULTS: Cytogenetic analyses revealed a high frequency of polyploid cells in cultures from both R6/2 and wild-type mice with the greatest proportions of polyploid cells in cultures derived from skeletal muscle cells of both genotypes. The presence of polyploid cells in skeletal muscle in vivo was confirmed by fluorescence in situ hybridisation with centromeric probes. Enlarged and supernumerary centrosomes were found in cultures from both R6/2 and wild-type mice. However, no aneuploid cells could be found in any of the tissues. CONCLUSION: We conclude that polyploid cells are found in fibroblast and skeletal muscle cultures derived from both R6/2 and wild-type littermate mice and that aneuploidy is unlikely to be a hallmark of HD

    Binomial Mitotic Segregation of MYCN-Carrying Double Minutes in Neuroblastoma Illustrates the Role of Randomness in Oncogene Amplification

    Get PDF
    BACKGROUND: Amplification of the oncogene MYCN in double minutes (DMs) is a common finding in neuroblastoma (NB). Because DMs lack centromeric sequences it has been unclear how NB cells retain and amplify extrachromosomal MYCN copies during tumour development. PRINCIPAL FINDINGS: We show that MYCN-carrying DMs in NB cells translocate from the nuclear interior to the periphery of the condensing chromatin at transition from interphase to prophase and are preferentially located adjacent to the telomere repeat sequences of the chromosomes throughout cell division. However, DM segregation was not affected by disruption of the telosome nucleoprotein complex and DMs readily migrated from human to murine chromatin in human/mouse cell hybrids, indicating that they do not bind to specific positional elements in human chromosomes. Scoring DM copy-numbers in ana/telophase cells revealed that DM segregation could be closely approximated by a binomial random distribution. Colony-forming assay demonstrated a strong growth-advantage for NB cells with high DM (MYCN) copy-numbers, compared to NB cells with lower copy-numbers. In fact, the overall distribution of DMs in growing NB cell populations could be readily reproduced by a mathematical model assuming binomial segregation at cell division combined with a proliferative advantage for cells with high DM copy-numbers. CONCLUSION: Binomial segregation at cell division explains the high degree of MYCN copy-number variability in NB. Our findings also provide a proof-of-principle for oncogene amplification through creation of genetic diversity by random events followed by Darwinian selection

    Cryptic terminal chromosome rearrangements in colorectal carcinoma cell lines detected by subtelomeric FISH analysis.

    No full text
    Epithelial tumour karyotypes are often difficult to study by standard cytogenetic methods because of poor chromosome preparation quality and the high complexity of their genomic rearrangements. Subtelomeric fluorescence in situ hybridisation (FISH) has proved to be a useful method for detecting cryptic constitutional chromosomal rearrangements but little is known about its usefulness for tumour cytogenetic analysis. Using a combination of chromosome banding, multicolour karyotyping and subtelomeric FISH, five colorectal cancer cell lines were characterised. The resulting data were compared to results from previous studies by comparative genomic hybridisation and spectral karyotyping or multicolour FISH. Subtelomeric FISH made it possible to resolve several highly complex chromosome rearrangements, many of which had not been detected or were incompletely characterised by the other methods. In particular, previously undetected terminal imbalances were found in the two cell lines not showing microsatellite instability. Copyright (c) 2006 S. Karger AG, Base

    Structural and numerical chromosome changes in colon cancer develop through telomere-mediated anaphase bridges, not through mitotic multipolarity.

    No full text
    Telomere dysfunction has been associated with chromosomal instability in colorectal carcinoma, but the consequences of telomere-dependent instability for chromosome integrity and clonal evolution have been little explored. We show here that abnormally short telomeres lead to a wide spectrum of mitotic disturbances in colorectal cancer cell lines, including anaphase bridging, whole-chromosome lagging, and mitotic multipolarity. These abnormalities were found in both the presence and absence of microsatellite instability. The mean telomere length varied extensively between cells from the same tumor, allowing the establishment of tumor cell subpopulations with highly different frequencies of mitotic disturbances. Anaphase bridging typically resulted in either inter-centromeric chromatin fragmentation or centromere detachment, leading to pericentromeric chromosome rearrangements and loss of whole chromosomes, respectively. There was a strong correlation between anaphase bridges and multipolar mitoses, and the induction of dicentric chromosomes by gamma irradiation and telomerase inhibition led to an elevated frequency of multipolar mitotic spindles, suggesting that multipolarity could result from polyploidization triggered by anaphase bridging. Chromatid segregation in multipolar mitoses was close to random, resulting in frequent nullisomies and nonviable daughter cells. In contrast, there was a high clonogenic survival among cells having gone through anaphase bridging in bipolar mitoses. Bridging of telomere-deficient chromosomes could thus be a major mutational mechanism in colorectal cancer, whereas mitotic multipolarity appears to be a secondary phenomenon that rarely, if ever, contributes to clonal evolution

    Defective chromosome segregation and telomere dysfunction in aggressive Wilms' tumors

    No full text
    Purpose: In many childhood neoplasms, prognostic subgroups have been defined based on specific chromosome changes. In Wilms' tumor (WT), such subclassification has been hampered by the diverse and relatively unspecific pattern of chromosomal imbalances present in these tumors. Unspecific patterns of cytogenetic imbalances in tumors are often caused by mitotic segregation errors due to short dysfunctional telomeres. As an alternative to cytogenetic classification, we therefore have evaluated whether the rate of telomere-dependent chromosomal instability could influence the clinical course inWT patients. Experimental Design: Telomere function and mitotic segregation errors were assessed in 12 cultured tumors and in tumor tissue sections from 41 WT patients. Results: Abnormal telomere shortening was found in cultured cells and in tissue sections from highly aggressive tumors. In vitro, dysfunctional telomeres were associated to specific cell division abnormalities, including anaphase bridges and multipolar mitoses. Assessment of mitotic figures in tissue sections revealed that anaphase bridges and multipolar mitoses were predominantly, but not exclusively, present in high-risk tumors and were predictors of poor event-free and overall survival. Conclusions: Telomere-dependent mitotic instability is present in a subgroup of WT predominately consisting of high-risk tumors

    Distinct mitotic segregation errors mediate chromosomal instability in aggressive urothelial cancers.

    No full text
    Purpose: Chromosomal instability (CIN) is believed to have an important role in the pathogenesis of urothelial cancer (UC). The aim of this study was to evaluate whether disturbances of mitotic segregation contribute to CIN in UC, if these processes have any effect on the course of disease, and how deregulation of these mechanisms affects tumor cell growth. Experimental Design: We developed molecular cytogenetic methods to classify mitotic segregation abnormalities in a panel of UC cell lines. Mitotic instabilities were then scored in biopsies from 52 UC patients and compared with the outcome of tumor disease. Finally, UC cells were exposed in vitro to a telomerase inhibitor to assess how this affects mitotic stability and cell proliferation. Results: Three distinct chromosome segregation abnormalities were identified: (a) telomere dysfunction, which triggers structural rearrangements and loss of chromosomes through anaphase bridging; (b) sister chromatid nondisjunction, which generates discrete chromosomal copy number variations; and (c) supernumerary centrosomes, which cause dramatic shifts in chromosome copy number through multipolar cell division. Chromosome segregation errors were already present in preinvasive tumors and a high rate mitotic instability was an independent predictor of poor survival. However, induction of even higher levels of the same segregation abnormalities in UC cells by telomerase inhibition in vitro led to reduced tumor cell proliferation and clonogenic survival. Conclusion: Several distinct chromosome segregation errors contribute to CIN in UC, and the rate of such mitotic errors has a significant effect on the clinical course. Efficient tumor cell proliferation may depend on the tight endogenous control of these processes
    corecore