2,152 research outputs found

    Visual Saliency Based on Multiscale Deep Features

    Get PDF
    Visual saliency is a fundamental problem in both cognitive and computational sciences, including computer vision. In this CVPR 2015 paper, we discover that a high-quality visual saliency model can be trained with multiscale features extracted using a popular deep learning architecture, convolutional neural networks (CNNs), which have had many successes in visual recognition tasks. For learning such saliency models, we introduce a neural network architecture, which has fully connected layers on top of CNNs responsible for extracting features at three different scales. We then propose a refinement method to enhance the spatial coherence of our saliency results. Finally, aggregating multiple saliency maps computed for different levels of image segmentation can further boost the performance, yielding saliency maps better than those generated from a single segmentation. To promote further research and evaluation of visual saliency models, we also construct a new large database of 4447 challenging images and their pixelwise saliency annotation. Experimental results demonstrate that our proposed method is capable of achieving state-of-the-art performance on all public benchmarks, improving the F-Measure by 5.0% and 13.2% respectively on the MSRA-B dataset and our new dataset (HKU-IS), and lowering the mean absolute error by 5.7% and 35.1% respectively on these two datasets.Comment: To appear in CVPR 201

    Borrowing Treasures from the Wealthy: Deep Transfer Learning through Selective Joint Fine-tuning

    Get PDF
    Deep neural networks require a large amount of labeled training data during supervised learning. However, collecting and labeling so much data might be infeasible in many cases. In this paper, we introduce a source-target selective joint fine-tuning scheme for improving the performance of deep learning tasks with insufficient training data. In this scheme, a target learning task with insufficient training data is carried out simultaneously with another source learning task with abundant training data. However, the source learning task does not use all existing training data. Our core idea is to identify and use a subset of training images from the original source learning task whose low-level characteristics are similar to those from the target learning task, and jointly fine-tune shared convolutional layers for both tasks. Specifically, we compute descriptors from linear or nonlinear filter bank responses on training images from both tasks, and use such descriptors to search for a desired subset of training samples for the source learning task. Experiments demonstrate that our selective joint fine-tuning scheme achieves state-of-the-art performance on multiple visual classification tasks with insufficient training data for deep learning. Such tasks include Caltech 256, MIT Indoor 67, Oxford Flowers 102 and Stanford Dogs 120. In comparison to fine-tuning without a source domain, the proposed method can improve the classification accuracy by 2% - 10% using a single model.Comment: To appear in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017

    Protein Secondary Structure Prediction Using Cascaded Convolutional and Recurrent Neural Networks

    Full text link
    Protein secondary structure prediction is an important problem in bioinformatics. Inspired by the recent successes of deep neural networks, in this paper, we propose an end-to-end deep network that predicts protein secondary structures from integrated local and global contextual features. Our deep architecture leverages convolutional neural networks with different kernel sizes to extract multiscale local contextual features. In addition, considering long-range dependencies existing in amino acid sequences, we set up a bidirectional neural network consisting of gated recurrent unit to capture global contextual features. Furthermore, multi-task learning is utilized to predict secondary structure labels and amino-acid solvent accessibility simultaneously. Our proposed deep network demonstrates its effectiveness by achieving state-of-the-art performance, i.e., 69.7% Q8 accuracy on the public benchmark CB513, 76.9% Q8 accuracy on CASP10 and 73.1% Q8 accuracy on CASP11. Our model and results are publicly available.Comment: 8 pages, 3 figures, Accepted by International Joint Conferences on Artificial Intelligence (IJCAI

    Deep Contrast Learning for Salient Object Detection

    Get PDF
    Salient object detection has recently witnessed substantial progress due to powerful features extracted using deep convolutional neural networks (CNNs). However, existing CNN-based methods operate at the patch level instead of the pixel level. Resulting saliency maps are typically blurry, especially near the boundary of salient objects. Furthermore, image patches are treated as independent samples even when they are overlapping, giving rise to significant redundancy in computation and storage. In this CVPR 2016 paper, we propose an end-to-end deep contrast network to overcome the aforementioned limitations. Our deep network consists of two complementary components, a pixel-level fully convolutional stream and a segment-wise spatial pooling stream. The first stream directly produces a saliency map with pixel-level accuracy from an input image. The second stream extracts segment-wise features very efficiently, and better models saliency discontinuities along object boundaries. Finally, a fully connected CRF model can be optionally incorporated to improve spatial coherence and contour localization in the fused result from these two streams. Experimental results demonstrate that our deep model significantly improves the state of the art.Comment: To appear in CVPR 201

    Object recognition using multi-view imaging

    No full text
    Single view imaging data has been used in most previous research in computer vision and image understanding and lots of techniques have been developed. Recently with the fast development and dropping cost of multiple cameras, it has become possible to have many more views to achieve image processing tasks. This thesis will consider how to use the obtained multiple images in the application of target object recognition. In this context, we present two algorithms for object recognition based on scale- invariant feature points. The first is single view object recognition method (SOR), which operates on single images and uses a chirality constraint to reduce the recognition errors that arise when only a small number of feature points are matched. The procedure is extended in the second multi-view object recognition algorithm (MOR) which operates on a multi-view image sequence and, by tracking feature points using a dynamic programming method in the plenoptic domain subject to the epipolar constraint, is able to fuse feature point matches from all the available images, resulting in more robust recognition. We evaluated these algorithms using a number of data sets of real images capturing both indoor and outdoor scenes. We demonstrate that MOR is better than SOR particularly for noisy and low resolution images, and it is also able to recognize objects that are partially occluded by combining it with some segmentation techniques
    • …
    corecore