182 research outputs found

    DataCI: A Platform for Data-Centric AI on Streaming Data

    Full text link
    We introduce DataCI, a comprehensive open-source platform designed specifically for data-centric AI in dynamic streaming data settings. DataCI provides 1) an infrastructure with rich APIs for seamless streaming dataset management, data-centric pipeline development and evaluation on streaming scenarios, 2) an carefully designed versioning control function to track the pipeline lineage, and 3) an intuitive graphical interface for a better interactive user experience. Preliminary studies and demonstrations attest to the easy-to-use and effectiveness of DataCI, highlighting its potential to revolutionize the practice of data-centric AI in streaming data contexts.Comment: 3 pages, 4 figure

    Relative Policy-Transition Optimization for Fast Policy Transfer

    Full text link
    We consider the problem of policy transfer between two Markov Decision Processes (MDPs). We introduce a lemma based on existing theoretical results in reinforcement learning to measure the relativity gap between two arbitrary MDPs, that is the difference between any two cumulative expected returns defined on different policies and environment dynamics. Based on this lemma, we propose two new algorithms referred to as Relative Policy Optimization (RPO) and Relative Transition Optimization (RTO), which offer fast policy transfer and dynamics modelling, respectively. RPO transfers the policy evaluated in one environment to maximize the return in another, while RTO updates the parameterized dynamics model to reduce the gap between the dynamics of the two environments. Integrating the two algorithms results in the complete Relative Policy-Transition Optimization (RPTO) algorithm, in which the policy interacts with the two environments simultaneously, such that data collections from two environments, policy and transition updates are completed in one closed loop to form a principled learning framework for policy transfer. We demonstrate the effectiveness of RPTO on a set of MuJoCo continuous control tasks by creating policy transfer problems via variant dynamics.Comment: Accepted by AAAI 202

    Active-Learning-as-a-Service: An Efficient MLOps System for Data-Centric AI

    Full text link
    The success of today's AI applications requires not only model training (Model-centric) but also data engineering (Data-centric). In data-centric AI, active learning (AL) plays a vital role, but current AL tools can not perform AL tasks efficiently. To this end, this paper presents an efficient MLOps system for AL, named ALaaS (Active-Learning-as-a-Service). Specifically, ALaaS adopts a server-client architecture to support an AL pipeline and implements stage-level parallelism for high efficiency. Meanwhile, caching and batching techniques are employed to further accelerate the AL process. In addition to efficiency, ALaaS ensures accessibility with the help of the design philosophy of configuration-as-a-service. It also abstracts an AL process to several components and provides rich APIs for advanced users to extend the system to new scenarios. Extensive experiments show that ALaaS outperforms all other baselines in terms of latency and throughput. Further ablation studies demonstrate the effectiveness of our design as well as ALaaS's ease to use. Our code is available at \url{https://github.com/MLSysOps/alaas}.Comment: 8 pages, 7 figure

    Flexible generation of structured terahertz fields via programmable exchange-biased spintronic emitters

    Full text link
    Structured light, particularly in the terahertz frequency range, holds considerable potential for a diverse range of applications. However, the generation and control of structured terahertz radiation pose major challenges. In this work, we demonstrate a novel programmable spintronic emitter that can flexibly generate a variety of structured terahertz waves. This is achieved through the precise and high-resolution programming of the magnetization pattern on the emitter surface, utilizing laser-assisted local field cooling of an exchange-biased ferromagnetic heterostructure. Moreover, we outline a generic design strategy for realizing specific complex structured terahertz fields in the far field. Our device successfully demonstrates the generation of terahertz waves with diverse structured polarization states, including spatially separated circular polarizations, azimuthal or radial polarization states, and a full Poincare beam. This innovation opens a new avenue for designing and generating structured terahertz radiations, with potential applications in terahertz microscopy, communication, quantum information, and light-matter interactions

    Active spintronic-metasurface terahertz emitters with tunable chirality

    Full text link
    The ability to manipulate the electric-field vector of broadband terahertz waves is essential for applications of terahertz technologies in many areas, and can open up new possibilities for nonlinear terahertz spectroscopy and coherent control. Here, we propose a novel laser-driven terahertz emitter, consisting of metasurface-patterned magnetic multilayer heterostructures. Such hybrid terahertz emitters can combine the advantages of spintronic emitters for being ultrabroadband, efficient and flexible, as well as those of metasurfaces for the unique capability to manipulate terahertz waves with high precision and degree of freedom. Taking a stripe-patterned metasurface as an example, we demonstrate the generation of broadband terahertz waves with tunable chirality. Based on experimental and theoretical studies, the interplay between the laser-induced spintronic-origin currents and the metasurface-induced transient charges/currents are investigated, revealing the strong influence on the device functionality originated from both the light-matter interactions in individual metasurface units and the dynamic coupling between them. Our work not only offers a flexible, reliable and cost-effective solution for chiral terahertz wave generation and manipulation, but also opens a new pathway to metasurface-tailored spintronic devices for efficient vector-control of electromagnetic waves in the terahertz regime
    • …
    corecore