37 research outputs found
Equilibrium Melting Temperature of Polymorphic Poly(L-lactide) and Its Supercooling Dependence on Growth Kinetics
In this study, the isothermal crystallization process of poly(l-lactide) (PLLA) has been investigated using in situ XRD, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). Linear and nonlinear extrapolation methods have been deployed to estimate the equilibrium melting temperature ( T m 0 ), which is used for analyzing the supercooling dependence of the PLLA spherulitic growth rate (G). A double-melting behavior observed for PLLA under crystallization Tc < 120 °C has been attributed to the formation of both α′ and α crystals. The T m 0 values of both α′ and α crystals have been evaluated using the linear method (172.8 °C) and nonlinear method (196.4 °C), with the nonlinear estimate being 23.6 °C higher. A discontinuity in the temperature dependence of spherulite growth rate is observed around 128.3 °C. Regime II–III transition is found to occur at 128.3 °C when T m 0 = 196.4 °C as estimated by the nonlinear extrapolation method
Fabrication of a novel hierarchical fibrous scaffold for breast cancer cell culture
Supplementary data to this article can be found online at https://doi.org/10.1016/j.polymertesting.2019.106107.Scaffolds combining nano- and submicro-fibers closely mimicking extracellular matrix (ECM) have been poorly exploited for in vitro cancer cell culture. Herein, a combined electrospinning and modified in situ biosynthesis method has been developed to fabricate a novel scaffold consisting of bacterial cellulose (BC) nanofibers and electrospun cellulose acetate (CA) submicrofibers to mimic the fibrillar structure of natural ECM. The CA/BC nano/submicrofibrous scaffold was characterized by scanning electron microscopy (SEM), mechanical strength tests, porosity measurements, and cell studies using the MCF-7 breast cancer cells. In addition, the sensitivity of the cancer cells seeded in the CA/BC nano/submicrofibrous scaffold to an anticancer drug was assessed. It was found that the CA/BC scaffold exhibited an interconnected porous structure in which BC nanofibers penetrated into the submicrofibrous CA scaffold. Such sophisticated structure was responsible for the improved mechanical properties of CA/BC scaffold over the ones obtained using a single kind of fibers. More importantly, the CA/BC scaffold showed improved cell adhesion, migration, and proliferation over single BC or CA scaffold. Finally, cells grown on CA/BC scaffold exhibited a greater doxorubicin resistance than those on single CA or BC scaffold. The results suggest that the CA/BC nano/submicrofibrous scaffold has potential for application in in vitro tumor model for the study of cancer progression and drug screening.This work was supported by the Key Project of Natural Science Foundation of Jiangxi Province (Grant no. 20161ACB20018), the National Natural Science Foundation of China (Grant nos. 31870963,
31660264, and 51572187), the Youth Science Foundation of Jiangxi Province (Grant no. 20181BAB216010), and the Science and Technology Research Project of Jiangxi Education Department (Grant
no. GJJ180348).info:eu-repo/semantics/publishedVersio
Incorporating graphene oxide into biomimetic nano-microfibrous cellulose scaffolds for enhanced breast cancer cell behavior
Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10570-020-03078-w)
contains supplementary material, which is available to authorized users.The impact of graphene oxide (GO) on normal cells has been widely investigated. However, much less is known on its effect on cancer cells. Herein, GO nanosheets were incorporated into electrospun cellulose acetate (CA) microfibers. The GO-incorporated CA (GO/CA) microfibers were combined with bacterial cellulose (BC) nanofibers via in situ biosynthesis to obtain the nano-microfibrous scaffolds. The GO/CA-BC scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The GO/CA-BC scaffolds were used for breast cancer cell culture to evaluate the effect of GO on cancer cell behavior. Fluorescence images revealed large multicellular clusters on the surface of GO/CA-BC scaffolds. Compared to the bare CA-BC scaffold, the GO/CA-BC scaffolds not only showed enhanced mechanical properties but also improved cell proliferation. It is expected that the GO/CA-BC scaffolds would provide a suitable microenvironment for the culture of cancer cells which is necessary for drug screening and cell biology study.This work was supported by National Natural Science Foundation of China (Grant nos. 51572187,
51973058, 31660264, 31870963), the Key Research and Development Program of Jiangxi Province (No.
20192ACB80008), and the Youth Science Foundation of Jiangxi Province (No. 20181BAB216010), and Key Project of Natural Science Foundation of Jiangxi Province (No. 20161ACB20018).info:eu-repo/semantics/publishedVersio
Heparinization and hybridization of electrospun tubular graft for improved endothelialization and anticoagulation
Supplementary data to this article can be found online at https://doi.org/10.1016/j.msec.2020.111861.Constructing biomimetic structure and immobilizing antithrombus factors are two effective methods to ensure rapid endothelialization and long-term anticoagulation for small-diameter vascular grafts. However, few literatures are available regarding simultaneous implementation of these two strategies. Herein, a nano-micro-fibrous biomimetic graft with a heparin coating was prepared via a step-by-step in situ biosynthesis method to improve potential endothelialization and anticoagulation. The 4-mm-diameter tubular graft consists of electrospun cellulose acetate (CA) microfibers and entangled bacterial nanocellulose (BNC) nanofibers with heparin coating on dual fibers. The hybridized and heparinized graft possesses suitable pore structure that facilitates endothelia cells adhesion and proliferation but prevents infiltration of fibrous tissue and blood leakage. In addition, it shows higher mechanical properties than those of bare CA and hybridized CA/BNC grafts, which match well with native blood vessels. Moreover, this dually modified graft exhibits improved blood compatibility and endothelialization over the counterparts without hybridization or heparinization according to the testing results of platelet adhesion, cell morphology, and protein expression of von Willebrand Factor. This novel graft with dual modifications shows promising as a new small-diameter vascular graft. This study provides a guidance for promoting endothelialization and blood compatibility by dual modifications of biomimetic structure and immobilized bioactive molecules.This work was supported by the National Natural Science Foundation of China (grant nos. 51973058 and 31870963), the Key Research and Development Program of Jiangxi Province (No. 20192ACB80008), and
the Key Project of Natural Science Foundation of Jiangxi Province (20202ACBL204013).info:eu-repo/semantics/publishedVersio
Biocompatibility evaluation of bacterial cellulose as a scaffold material for tissue-engineered corneal stroma
In this work, biocompatibility of bacterial cellulose (BC) was assessed as the scaffold for corneal stroma replacement. Biocompatibility was evaluated by examining rabbit corneal epithelial and stromal cells cultured on the BC scaffold. The growth of primary cells was assessed by optical microscope, scanning electron microscope (SEM), and transmission electron microscope (TEM). Live/dead viability/cytotoxicity assay and CCK-8 assay were used to evaluate cell survival. BC was surgically implanted in vivo into a stromal pocket. During a 3-month follow-up, the biocompatibility of BC was assessed. We found that epithelial and stromal cells grew well on BC and showed a survival rate of nearly 100\\%. The SEM examination for both kinds of cell showed abundant leafy protrusions, spherical projections, filopodia, cytoskeletons, and cellular interconnections. The stromal cells cultured on BC arranged regularly. TEM observation revealed normal cellular microstructure and a tight adhesion to the BC membrane. In vivo observation confirmed the optical transparency of BC during 3-month follow-up. The results demonstrated that BC had good biocompatibility for the tissue engineering of corneal stroma.This work is supported by the National Natural Science Foundation of China (Grant Nos. 81200663,
51572187, 51973058, and 31870963), Tianjin Clinical Key Discipline Project (Grant No. TJLCZDXKM014), and Key Research and Development Program of Jiangxi Province (No. 20192ACB80008, 20171BBG70112).info:eu-repo/semantics/publishedVersio
Controllable synthesis of biomimetic nano/submicro-fibrous tubes for potential small-diameter vascular grafts
Mimicking the morphological structure of native blood vessels is critical for the development of vascular grafts. Herein, small-diameter composite vascular grafts that integrate the nanofibrous bacterial cellulose (BC) and submicrofibrous cellulose acetate (CA) were fabricated via a combined electrospinning and step-by-step in situ biosynthesis. Scanning electron microscopy (SEM) observation shows the nano/submicro-fibrous morphology and well-interconnected porous structure of the BC/CA grafts. It is found that the BC/CA graft with a suitable BC content demonstrates lower potential of thrombus formation and enhanced endothelialization as compared to the BC and CA counterparts. Western blotting and RT-qPCR results suggest that the BC/CA-2 graft promotes endothelialization by improving expressions of genes vWF-1 and CD31 and protein CD31. The in vivo tests demonstrate much lower inflammatory response to the BC/CA graft. These results suggest that the BC/CA graft shows a great potential as an artificial graft for rapid formation of an endothelial cell monolayer.National Natural Science Foundation of China (Grant no. 51973058, 31870963, 31760265) and Key Research and Development Program of Jiangxi Province (No. 20192ACB80008)info:eu-repo/semantics/publishedVersio
Scalable synthesis of robust and stretchable composite wound dressings by dispersing silver nanowires in continuous bacterial cellulose
"Available online 31 July 2020"While silver nanoparticles are widely used to endow materials with antibacterial activity, silver nanowires (AgNWs) have not attracted much attention. Herein, the composites of bacterial cellulose (BC) and AgNWs were prepared through a novel step-by-step in situ biosynthesis which retains the three-dimensional network of BC. The results of water vapor permeability, water uptake rate, and water retention rate showed that the BC/AgNW wound dressings could absorb wound skin exudates and maintain moisture environments. Furthermore, the BC/AgNW dressings were robust and stretchable. More importantly, the BC/AgNW dressings exhibited sustained release of Ag+. The results from animal tests indicated that the BC/AgNW dressing with 38.4 wt% AgNWs exhibited higher expression levels of cytokeratin-10 and integrin-β4, greater proliferation of keratinocytes and formation of epithelial tissues and greatly improved skin regeneration over the bare BC. We propose that the integrated nanofibrous structure and the excellent and sustained antibacterial activity of AgNWs are responsible for the excellent in vivo wound healing ability and biocompatibility. These results suggest that the BC/AgNW composites have promising application as wound dressings.Y. Wan, S. Yang, and J. Wang contributed equally to this work, which
was funded by the National Natural Science Foundation of China (Grant
nos. 31870963, 51973058) and the Provincial Key Research and
Development Program of Jiangxi (No. 20192ACB80008).info:eu-repo/semantics/publishedVersio
Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium
Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.nbt.2018.12.002.This work aimed at the optimization of bacterial nanocellulose (BNC) production by static culture, using Komagataeibacter xylinus BPR 2001 (K. xylinus). Response surface methodology - central composite design was used to evaluate the effect of inexpensive and widely available nutrient sources, namely molasses, ethanol, corn steep liquor (CSL) and ammonium sulphate, on BNC production yield. The optimized parameters for maximum BNC production were % (m/v): molasses 5.38, CSL 1.91, ammonium sulphate 0.63, disodium phosphate 0.270, citric acid 0.115 and ethanol 1.38 % (v/v). The experimental and predicted maximum BNC production yields were 7.5±0.54g/L and 6.64±0.079g/L, respectively and the experimental and predicted maximum BNC productivity were 0.829±0.046g/L/day and 0.734±0.079g/L/day, after 9 days of static culture fermentation, at 30°C. The effect of surface area and culture medium depth on production yield and productivity were also studied. BNC dry mass production increased linearly with surface area, medium depth and fermentation time. So long as nutrients were still available in the culture media, BNC mass productivity was constant. The results show that a high BNC production yield can be obtained by static culture of K. xylinus BPR 2001 using a low-cost medium. These are promising conditions for the static industrial scale BNC production, since as compared to agitated bioreactors, higher productivities may be reached, while avoiding high capital and operating costs.The authors would like to acknowledge the Portuguese Foundation for Science and Technology (FCT) for the financial support of the PhD grant SFRH/BD/89547/2012 attributed to Ana Cristina Rodrigues, the financial support from project SkinChip: Disruptive cellulose-based microfluidic device for 3D skin modelling, PTDC/BBB-BIO/1889/2014. ThisstudywasalsosupportedbythePortugueseFoundationforScience and Technology (FCT) under the scope of the strategic funding of UID/ BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by European Regional Development Fund under the scope of NORTE 2020 - Programa Operacional Regional do Norte. The authors acknowledge COPAM Companhia Portuguesa de Amidos, S.A. (Portugal) and RAR Refinarias de Açúcar Reunidas, S.A. (Portugal) for kindly providing CSL and molasses, respectively.info:eu-repo/semantics/publishedVersio
An in vivo study on the effect of coating stability on osteointegration performance of collagen/hyaluronic acid multilayer modified titanium implants
Aseptic loosening of implant is one of the main causes of Ti-based implant failure. In our previous work, a novel stable collagen/hyaluronic acid (Col/HA) multilayer modified titanium coatings (TCs) was developed by layer-by-layer (LBL) covalent immobilization technique, which showed enhanced biological properties compared with TCs that were physically absorbed with Col/HA multilayer in vitro. In this study, a rabbit model with femur condyle defect was employed to compare the osteointegration performance of them. Results indicated that Col/HA multilayer with favourable stability could better facilitate osteogenesis around implants and bone-implant contact. The Col/HA multilayer covalent-immobilized TC may reduce aseptic loosening of implant