59 research outputs found

    Spatial-temporal analysis of tuberculosis infections in a rural prefecture in Japan

    Get PDF
    Background: Japan has remained medium-burden tuberculosis (TB) country for many years. However, a considerable variation was observed in the TB space-time distribution among Japan’s eight regions. This study aimed to investigate the spatial, temporal, and space-time dynamics of TB at the machi-level in Nagasaki prefecture.Methods: Data on the reported TB infections from 2007 to 2018 were collected from the information center for infectious diseases of the Nagasaki Prefectural Institute of Environment and Public Health. The time series, temporal trends, and spatial patterns of TB at the machi-level were explored using Moran’s I and Kulldorff’s space-time scan statistics.Results: A total of 4,364 TB infections were reported between April 2007 and December 2018 in Nagasaki prefecture. The infections were frequently reported in October, June, and January, and they showed spatial clustering with Moran’s I value ranging from 0.07 to 0.17 (p = 0.001). Ten significant clusters were identified, including one most likely cluster and nine secondary clusters, which were mainly concentrated in the densely inhabited districts of the two biggest cities in Nagasaki prefecture (Nagasaki city and Sasebo city), Shimabara peninsula, and Iki island.Conclusion: This study showed significant and unique spatial-temporal characteristics of TB infections in Nagasaki prefecture. Therefore, such information on the prevailing epidemiological situation of TB infections could help develop strategies that could effectively eliminate TB in Japan

    Specific Point in Time Excitation Control Method for Spatial Multi-Degree-of-Freedom Systems under Continuous Operation

    No full text
    The port container gantry crane studied in this paper is a four-degree-of-freedom spatial continuous system. In actual work, in order to make the container transfer smoothly, the response of the whole system needs to be accurately predicted and timely adjusted. The whole system is divided into rotary mechanism, lifting mechanism, lifting trolley mechanism, and big cart mechanism for detailed analysis. By constructing the field transfer matrix, a one-dimensional wave equation of continuous system and the Lagrange equation with redundant parameters, the response of each subsystem is solved precisely. The results of the study found that in some periods, the swing of the container was too large. In order to improve the safety and stability of transmission, an active control method of specific point in time excitation (SPE) is proposed for the first time. This method predicts the swing amplitude of the container in advance using the response results of the numerical model. When the set response interval is exceeded, the external excitation intervention can effectively inhibit the moving range of the container in the transit process. Finally, the results are compared with the simulation model to achieve the experimental purpose. It is in line with the expected experimental effect

    Identifying prognostic lncRNAs based on a ceRNA regulatory network in laryngeal squamous cell carcinoma

    No full text
    Abstract Purpose Growing evidence demonstrates that long non-coding RNAs (lncRNAs) play a crucial role as competing endogenous RNAs (ceRNAs) in tumor occurrence. The lncRNAs’ functions and clinical significance in laryngeal squamous cell carcinoma (LSCC) remain unclear. The study aims to reveal the lncRNA-associated ceRNA regulatory network of LSCC and clarify its clinical relevance. Methods Here, we obtained LSCC transcriptome data from The Cancer Genome Atlas (TCGA) database and identified the differential expression profile of lncRNAs, miRNAs, and mRNAs by the EdgeR R package. The function enrichment analysis of mRNAs was performed using clusterProfiler R package and GSEA3.0. Then, we constructed a ceRNA network and prognosis model based on lncRNAs through bioinformatic methods. Moreover, we explored the functions of prognosis-related lncRNA in LSCC by CCK-8 and transwell assay. Results 1961 lncRNAs, 69 miRNAs, and 2224 mRNAs were identified as differentially expressed genes in LSCC tissues. According to the transcriptome differential expression profile, a ceRNA network containing 61 lncRNAs, 21 miRNAs, and 77 mRNAs was established. Then, four lncRNAs (AC011933.2, FAM30A, LINC02086, LINC02575) were identified from the ceRNA network to build a prognosis model for LSCC patients. And we found that LINC02086 and LINC02575 promoted the proliferation, migration, and invasion of LSCC cells while AC011933.2 and FAM30A inhibited these biological functions in vitro. Furthermore, we validated that LINc02086/miR-770-5p/SLC26A2 axis promoted migration in LSCC. Conclusion Four lncRNAs of the ceRNA network were abnormally expressed and related to patient prognosis in LSCC. They played a significant role in the progress of LSCC via affecting the proliferation and metastasis of tumor cells

    Modeling and Optimization of Pulling Point Position of Luffing Jib on Portal Crane

    No full text
    Portal crane is the most commonly used equipment for cargo handling of large mixed loading ships with its advantages of flexible and convenient operation, wide adaptability, and high loading and unloading efficiency. The reasonable modeling and optimization of the pulling point position of luffing jib of portal crane can reduce the rack force of portal crane and the power consumption output of the rack and pinion during the luffing process. Based on penalty function optimization, the interior point method is used to optimize the pulling point position of luffing jib. Compared with the initial design, the race force of the luffing jib is reduced to a certain extent. In addition, the consistency between the finite element analysis results and the optimization results can be verified, and the effectiveness of the optimization design is also proved through the finite element analysis of portal crane

    Clustering-Based Decision Tree for Vehicle Routing Spatio-Temporal Selection

    No full text
    The algorithm of the clustering-based decision tree, which is a methodology of multimodal fusion, has made many achievements in many fields. However, it is not common in the field of transportation, especially in the application of automobile navigation. Meanwhile, the concept of Spatio-temporal data is now widely used. Therefore, we proposed a vehicle routing Spatio-temporal selection system based on a clustering-based decision tree. By screening and clustering Spatio-temporal data, which is a collection of individual point data based on historical driving data, we can identify the routes and many other features. Through the decision tree modeling of the state information of Spatio-temporal data, which includes the features of the historical data and route selection, we can obtain an optimal result, that is, the route selection made by the system. Moreover, all the above calculations and operations are done on the edge, which is different from the vast majority of current cloud computing vehicle navigation. We have also experimented with our system using real vehicle data. The experiments show that it can output path decision results for a given situation, which takes little time and is the same as the approximated case of networked navigation. The experiments yielded satisfactory results. Our system could save a lot of cloud computing power, which might change the current navigation systems

    Introducing Fuel Cell Application Using Sodium Vacancies in Hexagonal Wurtzite Structured ZnO Nanorods for Developing Proton–Ion Conductivity

    No full text
    Zinc oxide, a direct band gap semiconductor of ≥3.30 eV, is prevalent in potential requests for energy devices. The early-stage demonstration of ZnO provides a new method of developing high ionic conductivity in multifunctional semiconductors for electrolyte applications in ceramic fuel cells (CFCs). In the present work, we successfully synthesized Na-doped ZnO nanorods by a hydrothermal method and employed them as an electrolyte in CFCs. The synthesized Na-doped-ZnO nanorods showed an effective ionic conductivity of 8.75 × 10−2 S cm−1 along with an excellent power density of 609 mWcm−2 ± 5% when the fuel cell was operating at 550 °C. The enhanced ionic conductivity could be due to Na+ doping into Zn2+ and the high ionic radius of Na ions producing bulk oxygen vacancies in the ZnO structure to conduct oxygen ions or protons. Furthermore, we used experimental analysis, such as X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), ultraviolet–visible (UV–visible), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS), to evaluate the change in structural properties and mechanism of ionic transport in ZnO nanorods with sodium doping. The presented work provides insight into a novel approach of developing the high ionic conductivity of electrolytes in a low-cost ZnO semiconductor material

    ADAMTS9 is Silenced by Epigenetic Disruption in Colorectal Cancer and Inhibits Cell Growth and Metastasis by Regulating Akt/p53 Signaling

    No full text
    Background/Aims: ADAMTS (disintegrin-like and metalloproteinase with thrombospondin motifs) proteins are extracellular zinc metalloproteinases that play an important role in extracellular matrix assembly and degradation, connective tissue structuring, angiogenesis, and cell migration. Multiple studies suggest that ADAMTS proteins (e.g. ADAMTS9) can act as tumor suppressors. In gastric, esophageal, and nasopharyngeal carcinomas ADAMTS9 is frequently down-regulated by promoter methylation. Whether ADAMTS9 can function as a tumor suppressor gene (TSG) in colorectal cancer is still unclear. Methods: We performed immunohistochemistry, RT-PCR, and qRT-PCR, to examine the expression of ADAMTS9 in colorectal cancer cell lines and primary colorectal cancer tissues. Methylation-specific PCR was also carried out to investigate the promoter methylation status of ADAMTS9. We also explored the functions of ADAMTS9 in colorectal cancer cell lines through in vitro experiments. Results: ADAMTS9 expression was down-requlated or silenced in 83.3% (5/6) of colorectal cancer cell lines, and frequently repressed in 65.6% (21/32) of colorectal cancer tissues. Down-regulation of ADAMTS9 was partially due to promoter methylation. Exogenous expression of ADAMTS9 in colorectal cancer cell lines inhibited cell proliferation and migration through the regulation of cell cycle and apoptosis. In addition, ADAMTS9 prevented the activation of Akt, and its downstream targets in colorectal cancer cell lines. Conclusion: Our findings suggest ADAMTS9 is a TSG in colorectal cancer

    Fluorescent aggregation-induced emission (AIE)-based thermosetting electrospun nanofibers: fabrication, properties and applications

    No full text
    A curing process in nanofiber-based thermosetting polymers involves both rapid solvent evaporation and chemical cross-linking at the nanoscale, which altogether present a complicated scenario to study. In this paper, we employed aggregation-induced emission (AIE) phenomena with the help of fluorescence tests and scanning electron microscopy to study functional fluorescent AIE-based thermosetting nanofibers with reference to their fabrication, properties and possible applications. The properties that dictate the electrospinning of nanofibers were first studied together with their properties. Finally, we tested the obtained functional nanofibers as thermo-sensitive probes and chemosensors. These applications were possible courtesy of the restriction of intermolecular rotation (RIR) mechanism of the AIE luminogen (AIEgen) of TPE, which was successfully knitted onto the thermosetting polymer Epoxy. Its presence around the TPE-Epoxy structure dictates the fluorescence behaviors of the final composite depending on the material environment
    • …
    corecore