18 research outputs found

    Study on the Perception Mechanism of Utricles Based on Bionic Models

    No full text
    Background: The relationship between utricle diseases and structural lesions is not very clear in the clinic due to the complexity and delicacy of the utricle structure. Therefore, it is necessary to study the perception mechanism of the utricle. Methods: Imitating the sensory cells in the macula of the utricle, a symmetrical metal core PVDF fiber (SMPF) was designed as a bionic hair sensor to fabricate a bionic macula (BM), a bionic macula with sand (BMS) and a bionic utricle (BU). Then experiments were carried out on them. Results: This indicated the SMPF sensor can sense its bending deformation, which was similar to the sensory cell. The amplitude of the output charges of the SMPF in BMS and BU were significantly improved. The SMPF, whose electrode boundary was perpendicular to the impact direction, exhibited the largest output charges. Conclusion: The presence of otoliths and endolymph can improve the sensing ability of the utricle. The human brain can judge the direction of head linear accelerations based on the location of the sensory cell in the macula that produces the largest nerve signals. This provides a possibility of studying utricle abnormal functions in vitro in the future

    Development of Bionic Semicircular Canals and the Sensation of Angular Acceleration

    No full text
    To study the sensing process of the human semicircular canals (HSCs) during head rotation, which is difficult to directly measure due to physiological reasons. A 1-BSC (one-dimensional bionic semicircular canal) and 3-BSC were prepared with soft SMPFs (symmetric electrode metal core polyvinylidene difluoride fibers), which could sense deformations similar to human sensory cells. Based on these models, experiments were carried out to study the principle of the HSCs. Deformations of the bionic ampulla (BA) depended on the angular acceleration. Gravity had a strong influence on the deformation of the BA in the vertical plane. When the 3-BSC was subjected to angular acceleration around one of its centerlines, the three BAs all deformed. The deformation of the BAs was linearly related to the angular acceleration. The deformation of the BA in the main semicircular canal was exactly three times that of the other two BAs

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s
    corecore