58 research outputs found

    Seasonal cycle of circulation in the Antarctic Peninsula and the off-shelf transport of shelf waters into southern Drake Passage and Scotia Sea

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 90 (2013): 15-30, doi:10.1016/j.dsr2.2013.02.029.The seasonal cycle of circulation and transport in the Antarctic Peninsula shelf region is investigated using a high-resolution (~2km) regional model based on the Regional Oceanic Modeling System (ROMS). The model also includes a naturally occurring tracer with a strong source over the shelf (radium isotope 228Ra, t1/2=5.8 year) to investigate the sediment Fe input and its transport. The model is spun up for three years using climatological boundary and surface forcing and then run for the 2004-2006 period using realistic forcing. Model results suggest a persistent and coherent circulation system throughout the year consisting of several major components that converge water masses from various sources toward Elephant Island. These currents are largely in geostrophic balance, driven by surface winds, topographic steering, and large-scale forcing. Strong off-shelf transport of the Fe-rich shelf waters takes place over the northeastern shelf/slope of Elephant Island, driven by a combination of topographic steering, extension of shelf currents, and strong horizontal mixing between the ACC and shelf waters. These results are generally consistent with recent and historical observational studies. Both the shelf circulation and off-shelf transport show a significant seasonality, mainly due to the seasonal changes of surface winds and large-scale circulation. Modeled and observed distributions of 228Ra suggest that a majority of Fe-rich upper layer waters exported off-shelf around Elephant Island are carried by the shelfbreak current and the Bransfield Strait Current from the shallow sills between Gerlache Strait and Livingston Island, and northern shelf of the South Shetland Islands, where strong winter mixing supplies much of the sediment derived nutrients (including Fe) input to the surface layer.This project is supported by NOAA grant NA09OAR4310062. MZ and MJ 11 are also supported by NSF grant 0948378 and MAC by NSF grant 0948442

    Winter mesoscale circulation on the shelf slope region of the southern Drake Passage

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 90 (2013): 4-14, doi:10.1016/j.dsr2.2013.03.041.An austral winter cruise in July-August 2006 was conducted to study the winter circulation and iron delivery processes in the Southern Drake Passage and Bransfield Strait. Results from current and hydrographic measurements revealed a circulation pattern similar to that of the austral summer season observed in previous studies: The Shackleton Transverse Ridge (STR) in the southern Drake Passage blocks a part of the eastward Antarctic Circumpolar Current (ACC) which forces the ACC to detour southward, produces a Taylor Column over the STR, and forms an ACC jet within the Shackleton Gap, a deep channel between the STR and the shelf of Elephant Island. Observations show that to the west of the STR, the Upper Circumpolar Deep Water (UCDW) intruded onto the shelf around the South Shetland Islands while to the east of the STR, shelf waters were transported off the northern shelf of Elephant Island. Along a similar west-east transect approximately 50 km off the shelf, the northward transport of shelf waters was approximately 2.4 and 1.2 Sv in the austral winter and summer, respectively. The waters around Elephant Island primarily consist of the UCDW that has been modified by local cooling and freshening, unmodified UCDW that has recently intruded onto the shelf, and Bransfield Current water that is a mixture of shelf and Bransfield Strait waters. Weddell Sea outflows were observed which affect the hydrography and circulation in the Bransfield Strait and indirectly affect the circulation patterns in the southern Drake Passage and around Elephant Island. Two Fe enrichment and transport mechanisms are proposed that intrusions of the UCDW onto the northern shelf region of the South Shetland Islands is considered as the results of Ekman pumping due to prevailing westerly wind in the region while the offshelf transport of shelf waters in the shelf region east of Elephant Island is due to acquisition of positive vorticity by shelf waters from horizontal mixing with onshelf intruded ACC waters.This project was supported by the National Science Foundation grant numbers OPP-0229966, ANT-0444040 and ANT-0948378 to M. Zhou, OPP0230445, ANT0443403 and ANT-0948357 to C. Measures, ANT0443869 and ANT-0948442 to M. Charette, and OPP0230443, ANT0444134 and ANT0948338 to B.G. Mitchell

    Transient Focal Cerebral Ischemia/Reperfusion Induces Early and Chronic Axonal Changes in Rats: Its Importance for the Risk of Alzheimer's Disease

    Get PDF
    The dementia of Alzheimer's type and brain ischemia are known to increase at comparable rates with age. Recent advances suggest that cerebral ischemia may contribute to the pathogenesis of Alzheimer's disease (AD), however, the neuropathological relationship between these two disorders is largely unclear. It has been demonstrated that axonopathy, mainly manifesting as impairment of axonal transport and swelling of the axon and varicosity, is a prominent feature in AD and may play an important role in the neuropathological mechanisms in AD. In this study, we investigated the early and chronic changes of the axons of neurons in the different brain areas (cortex, hippocampus and striatum) using in vivo tracing technique and grading analysis method in a rat model of transient focal cerebral ischemia/reperfusion (middle cerebral artery occlusion, MCAO). In addition, the relationship between the changes of axons and the expression of β-amyloid 42 (Aβ42) and hyperphosphorylated Tau, which have been considered as the key neuropathological processes of AD, was analyzed by combining tracing technique with immunohistochemistry or western blotting. Subsequently, we found that transient cerebral ischemia/reperfusion produced obvious swelling of the axons and varicosities, from 6 hours after transient cerebral ischemia/reperfusion even up to 4 weeks. We could not observe Aβ plaques or overexpression of Aβ42 in the ischemic brain areas, however, the site-specific hyperphosphorylated Tau could be detected in the ischemic cortex. These results suggest that transient cerebral ischemia/reperfusion induce early and chronic axonal changes, which may be an important mechanism affecting the clinical outcome and possibly contributing to the development of AD after stroke

    Super-Aggregations of Krill and Humpback Whales in Wilhelmina Bay, Antarctic Peninsula

    Get PDF
    Ecological relationships of krill and whales have not been explored in the Western Antarctic Peninsula (WAP), and have only rarely been studied elsewhere in the Southern Ocean. In the austral autumn we observed an extremely high density (5.1 whales per km2) of humpback whales (Megaptera novaeangliae) feeding on a super-aggregation of Antarctic krill (Euphausia superba) in Wilhelmina Bay. The krill biomass was approximately 2 million tons, distributed over an area of 100 km2 at densities of up to 2000 individuals m−3; reports of such ‘super-aggregations’ of krill have been absent in the scientific literature for >20 years. Retentive circulation patterns in the Bay entrained phytoplankton and meso-zooplankton that were grazed by the krill. Tagged whales rested during daylight hours and fed intensively throughout the night as krill migrated toward the surface. We infer that the previously unstudied WAP embayments are important foraging areas for whales during autumn and, furthermore, that meso-scale variation in the distribution of whales and their prey are important features of this system. Recent decreases in the abundance of Antarctic krill around the WAP have been linked to reductions in sea ice, mediated by rapid climate change in this area. At the same time, baleen whale populations in the Southern Ocean, which feed primarily on krill, are recovering from past exploitation. Consideration of these features and the effects of climate change on krill dynamics are critical to managing both krill harvests and the recovery of baleen whales in the Southern Ocean

    Cardiac injury on admission linked to worse outcomes in hospitalized COVID-19 patients

    No full text
    Background/Aim. The novel severe acute respiratory syndrome coronavirus 2 (SARS Cov-2) has triggered a pandemic that causes a disease with complex clinical manifestations (coronavirus disease 2019, COVID-19). Soon it became clear that patients who had some comorbidities had a bigger chance of getting the severe form of COVID-19. The aim of the study was to investigate if there was a link between cardiac injury and COVID-19 severity and mortality in patients. Methods. All consecutive patients with laboratory-confirmed COVID-19 were included and followed up until discharge or death from January 30, 2020, to April 5, 2020. Results. A total of 261 COVID-19 patients were included, and 29 (11.1%) had cardiac injury on admission. Patients with cardiac injury were older than those without cardiac injury (72.8 vs 55.8 years old) and more likely to be male (82.8% vs 42.2%). Patients with cardiac injury were also more likely to be smokers (31.0% vs 12.5%), more likely to have chronic cardiovascular disease (24.1% vs 7.8%), chronic pulmonary disease (17.2% vs 3.0%), and chronic kidney disease (10.3% vs 2.2%) compared to patients without cardiac injury. Laboratory findings suggested that patients with cardiac injury were more likely to have leukocyte counts > 10 × 109/L, pronounced lymphopenia, direct bilirubin, myohemoglobin, blood urea nitrogen, C-reactive protein, and pro-B-type natriuretic peptide but lower levels of serum total protein and estimated glomerular filtration rates compared to patients without cardiac injury. Patients with cardiac injury experienced more complications (72.4% vs 47.8%), including acute respiratory distress syndrome (20.7% vs 2.7%), acute kidney injury (10.3 vs 0.4%), severe COVID-19 (58.6% vs 11.6%) and death (55.2% vs 3.9%) compared to patients without cardiac injury. Multivariate analyses showed that cardiac injury was associated with an increased risk of severe COVID-19 [hazard ratio (HR) = 8.71, 95% confidence interval (CI) = 2.37−32.04] and death (HR = 20.84, 95% CI = 1.32−328.22). Conclusion. Cardiac injury on admission was associated with a higher risk of disease progression and death in patients with COVID-19

    Quantitative proteomic analysis of prostate tissue specimens identifies deregulated protein complexes in primary prostate cancer

    No full text
    Abstract Background Prostate cancer (PCa) is the most frequently diagnosed non-skin cancer and a leading cause of mortality among males in developed countries. However, our understanding of the global changes of protein complexes within PCa tissue specimens remains very limited, although it has been well recognized that protein complexes carry out essentially all major processes in living organisms and that their deregulation drives the pathogenesis and progression of various diseases. Methods By coupling tandem mass tagging-synchronous precursor selection-mass spectrometry/mass spectrometry/mass spectrometry with differential expression and co-regulation analyses, the present study compared the differences between protein complexes in normal prostate, low-grade PCa, and high-grade PCa tissue specimens. Results Globally, a large downregulated putative protein–protein interaction (PPI) network was detected in both low-grade and high-grade PCa, yet a large upregulated putative PPI network was only detected in high-grade but not low-grade PCa, compared with normal controls. To identify specific protein complexes that are deregulated in PCa, quantified proteins were mapped to protein complexes in CORUM (v3.0), a high-quality collection of 4274 experimentally verified mammalian protein complexes. Differential expression and gene ontology (GO) enrichment analyses suggested that 13 integrin complexes involved in cell adhesion were significantly downregulated in both low- and high-grade PCa compared with normal prostate, and that four Prothymosin alpha (ProTα) complexes were significantly upregulated in high-grade PCa compared with normal prostate. Moreover, differential co-regulation and GO enrichment analyses indicated that the assembly levels of six protein complexes involved in RNA splicing were significantly increased in low-grade PCa, and those of four subcomplexes of mitochondrial complex I were significantly increased in high-grade PCa, compared with normal prostate. Conclusions In summary, to the best of our knowledge, the study represents the first large-scale and quantitative, albeit indirect, comparison of individual protein complexes in human PCa tissue specimens. It may serve as a useful resource for better understanding the deregulation of protein complexes in primary PCa
    • …
    corecore