57 research outputs found
Overexpression of DcR3 and Its Significance on Tumor Cell Differentiation and Proliferation in Glioma
Background. Overexpression of decoy receptor 3 (DcR3) have been reported in various classes of malignancies. However, its expression and clinicopathological contribution in gliomas has not been fully elucidated. Objective. To explore the expression and clinical significance of DcR3 protein in relation to tumor cell differentiation and proliferation in glioma cell lines and tissues. Methods. One hundred and twenty-five samples of glioma patients and 18 cases of normal brain tissues were recruited. The expression of DcR3 protein was detected using immunohistochemistry. Tumor differentiation was assessed by histologic characters and the status of glial fibrillary acidic protein (GFAP). Tumor cell labeling indexes (LIs) of Ki-67 and PCNA were also obtained. The relationship between the DcR3 level and clinicopathological features was investigated, including tumor differentiation, LIs, and survival. Meanwhile, the expression of DcR3 protein was also measured in the supernatants of 8 glioma cell lines and glioma cells freshly prepared from 8 human glioblastoma specimens by using western blot. Results. The level of DcR3 protein in gliomas was significantly higher than that in normal brain tissues (P<0.01). DcR3 expression showed positive correlations with tumor pathological grade (r=0.621, P<0.01) and negative with GFAP expression (r=-0.489, P<0.01). Furthermore, there were positive correlations between DcR3 expression and Ki-67, PCNA LIs (r=0.529, P<0.01; r=0.556, P<0.01). The survival in the DcR3 negative group was 50 ± 1.79 months, longer than that of the DcR3 positive group (48.36 ± 2.90), however, without significance (P=0.149). Different levels of DcR3 could also be detected in the culturing supernatants of all the 8 glioma cell lines and glioma cells freshly obtained from 8 human glioblastoma specimens. Conclusions. The overexpression of DcR3 might play a crucial role in the tumorigenesis, differentiation, and proliferation of glioma
Effects of Long-Lasting High-Definition Transcranial Direct Current Stimulation in Chronic Disorders of Consciousness: A Pilot Study
Transcranial direct current stimulation (tDCS) recently was shown to benefit rehabilitation of patients with disorders of consciousness (DOC). However, high-Definition tDCS (HD-tDCS) has not been applied in DOC. In this study, we tried to use HD-tDCS protocol (2 mA, 20 min, the precuneus, and sustaining 14 days) to rehabilitate 11 patients with DOC. Electroencephalography (EEG) and Coma Recovery Scale–Revised (CRS-R) scores were recorded at before (T0), after a single session (T1), after 7 days’ (T2), and 14 days’ HD-tDCS (T3) to assess the modulation effects. EEG coherence was measured to evaluate functional connectivity during the experiment. It showed that 9 patients’ scores increased compared with the baseline. The central-parietal coherence significantly decreased in the delta band in patients with DOC. EEG coherence might be useful for assessing the effect of HD-tDCS in patients with DOC. Long-lasting HD-tDCS over the precuneus is promising for the treatment of patients with DOC
Increased MiR-221 expression in hepatocellular carcinoma tissues and its role in enhancing cell growth and inhibiting apoptosis <it>in vitro</it>
Abstract Background MiR-221 is over-expressed in human hepatocellular carcinoma (HCC), but its clinical significance and function in HCC remains uncertain. The aim of the study was to investigate the relationship between miR-221 overexpression and clinicopathological parameters in HCC formalin-fixed paraffin-embedded (FFPE) tissues, and the effect of miR-221 inhibitor and mimic on different HCC cell lines in vitro. Methods MiR-221 expression was detected using real time RT-qPCR in FFPE HCC and the adjacent noncancerous liver tissues. The relationship between miR-221 level and clinicopathological features was also analyzed. Furthermore, miR-221 inhibitor and mimic were transfected into HCC cell lines HepB3, HepG2 and SNU449. The effects of miR-221 on cell growth, cell cycle, caspase activity and apoptosis were also investigated by spectrophotometry, fluorimetry, fluorescence microscopy and flow cytometry, respectively. Results The relative expression of miR-221 in clinical TNM stages III and IV was significantly higher than that in the stages I and II. The miR-221 level was also upregulated in the metastatic group compared to the nonmetastatic group. Furthermore, miR-221 over-expression was related to the status of tumor capsular infiltration in HCC clinical samples. Functionally, cell growth was inhibited, cell cycle was arrested in G1/S-phase and apoptosis was increased by miR-221 inhibitor in vitro. Likewise, miR-221 mimic accelerated the cell growth. Conclusions Expression of miR-221 in FFPE tissues could provide predictive significance for prognosis of HCC patients. Moreover, miR-221 inhibitor could be useful to suppress proliferation and induce apoptosis in HCC cells. Thus miR-221 might be a critical targeted therapy strategy for HCC.</p
Rare cavernous hemangioma of adrenal gland: case report
CONTEXT:Cavernous hemangiomas of the adrenal gland are rare benign neoplastic tumors. The clinical presentation of adrenal hemangiomas is usually vague, and they are often discovered incidentally through imaging examination s performed for other reasons.CASE REPORT:We report the case of a non-functional adrenal hemangioma found incidentally in a 37-year-old man with a one-year history of headache and hypertension. A right adrenal mass was detected by means of magnetic resonance imaging. Physical examination and all laboratory values were unremarkable. The patient underwent laparoscopic right adrenal gland resection. Histopathological evaluation confirmed adrenal cavernous hemangioma.CONCLUSIONS:Most occurrences of cavernous hemangiomas of the adrenal gland are non-functional and often discovered incidentally. Although rare, these unusual benign adrenal masses should form part of the differential diagnosis of adrenal neoplasms. The proper treatment for adrenal cavernous hemangioma is surgical removal
Synergistic Effect of MiR-146a Mimic and Cetuximab on Hepatocellular Carcinoma Cells
Previously, we found that the expression of microRNA-146a (miR-146a) was downregulated in hepatocellular carcinoma (HCC) formalin-fixed paraffin-embedded (FFPE) tissues compared to the adjacent noncancerous hepatic tissues. In the current study, we have explored the in vitro effect of miR-146a on the malignant phenotypes of HCC cells. MiR-146a mimic could suppress cell growth and increase cellular apoptosis in HCC cell lines HepG2, HepB3, and SNU449, as assessed by spectrophotometry, fluorimetry, and fluorescence microscopy, respectively. Furthermore, western blot showed that miR-146a mimic downregulated EGFR, ERK1/2, and stat5 signalings. These effects were less potent compared to that of a siRNA targeting EGFR, a known target gene of miR-146a. Moreover, miR-146a mimic could enhance the cell growth inhibition and apoptosis induction impact of various EGFR targeting agents. The most potent combination was miR-146a mimic with cetuximab, presenting a synergistic effect. In conclusion, miR-146a plays a vital role in the cell growth and apoptosis of HCC cells and inducing miR-146a level might be a critical targeted molecular therapy strategy for HCC
Underexpression of miR-34a in Hepatocellular Carcinoma and Its Contribution towards Enhancement of Proliferating Inhibitory Effects of Agents Targeting c-MET
<div><p>Aberrant expression of microRNA-34a (miR-34a) has been reported to be involved in the tumorigenesis and progression of various classes of malignancies. However, its role in hepatocellular carcinoma (HCC) has not been completely clarified. In the current study, we have investigated the clinical significance and the <i>in vitro</i> contribution of miR-34a on biological functions of human HCCs. miR-34a expression in eighty-three cases of HCC formalin-fixed paraffin-embedded (FFPE) tissues decreased significantly compared to that in the adjacent liver tissues (<i>P</i><0.01), as detected by real-time quantitative RT-PCR (RT-qPCR). miR-34a expression in the groups of TNM stage I and II, without metastasis and without portal vein tumor embolus, was significantly higher than that of their corresponding groups (<i>P</i><0.05). In functional experiments, miR-34a mimic suppressed cell growth, migration and invasion, meanwhile it increased cellular apoptosis and caspase activity in HCC cells. miR-34a mimic also reduced phospho-ERK1/2 and phospho-stat5 signaling. In addition, miR-34a mimic enhanced the effect of cell proliferation inhibition and caspase activity induction of agents targeting c-MET (siRNAs and small molecular inhibitor su11274). In conclusion, miR-34a may act as a tumor suppressor miRNA of HCC. The strategies to increase miR-34a level might be a critical targeted therapy for HCC in future.</p> </div
Transfection efficiency of miR-34a inhibitor and miR-34a mimic in HepG2 cells.
<p>HepG2 cells (2.5×10<sup>4</sup> cells per well using 6-well-plate) were transfected with miR-34a inhibitor, miR-34a mimic and their negative controls up to 96 h. Expression of miR-34a was detected using real time RT-qPCR and delta delta Cq was calculated.</p
- …