29 research outputs found

    An Environment-Friendly Multipath Routing Protocol for Underwater Acoustic Sensor Network

    Get PDF
    Underwater Acoustic Sensor Network (UASN) is a promising technique by facilitating a wide range of aquatic applications. However, routing scheme in UASN is a challenging task because of the characteristics of the nodes mobility, interruption of link, and interference caused by other underwater acoustic systems such as marine mammals. In order to achieve reliable data delivery in UASN, in this work, we present a disjoint multipath disruption-tolerant routing protocol for UASN (ENMR), which incorporates the Hue, Saturation, and Value color space (HSV) model to establish routing paths to greedily forward data packets to sink nodes. ENMR applies the mechanism to maintain the network topology. Simulation results show that, compared with the classic underwater routing protocols named PVBF, ENMR can improve packet delivery ratio and reduce network latency while avoiding introducing additional energy consumption

    Abdomen anatomic characteristics on CT scans as predictive markers for short-term complications following radical resection of colorectal cancer

    Get PDF
    BackgroundPrediction and management of short-term postoperative complications in patients with colorectal cancer are essential in postoperative rehabilitation. Through CT scan images, we can easily measure some parameters of abdomen anatomic characteristics. This study aimed to assess whether there is a relationship between the abdomen anatomic characteristics and short-term postoperative complications.Materials and methodsWe conducted a retrospective study. Eighty patients in each complication group and non-complication group were recruited with propensity score match. Demographics, perioperative laboratory results and surgical information were collected and compared between groups with univariate analysis. Significant elements were brought into subsequent logistic regression analysis and ROC analysis for further identification.ResultsUnivariate analysis showed that preoperative white blood cells, preoperative neutrophil counts, rectus abdominis thickness (RAT), subcutaneous fat thickness (SFT), and abdomen depth (AD) were significantly different between the complication group and non-complication group. Logistic regression analysis demonstrated that higher RAT (p = 0.002), SFT (p < 0.001) and AD (p < 0.001) independently predicted the incidence of short-term postoperative complications.ConclusionsIn this study on patients undergoing radical resection of colorectal cancer, abdomen anatomic characteristics including higher RAT, SFT and AD are associated with an increased risk of short-term postoperative complications

    PC-MAC: A Prescheduling and Collision-Avoided MAC Protocol for Underwater Acoustic Sensor Networks

    No full text
    The impact of the acoustic modem with long preamble characteristic on the collision feature of the media access control scheme in underwater acoustic sensor networks (UANs) is evaluated. It is observed that the collision probability is relatively high due to the extremely long duration of preamble. As a result, UANs generally have much lower network throughput. To address this problem, a prescheduling MAC protocol named PC-MAC for UANs is proposed, which leverages a novel prescheduling scheme for the exchange of control packet to alleviate the collision probability among control packets. PC-MAC is a reservation-based channel access scheme. In the proposed protocol, an extra guard time is introduced to avoid the influence of dynamic spatial-temporal uncertainty of the sender and receiver positions. Simulation results show that PC-MAC outperforms classic reservation-based MAC protocol named SFAMA in terms of network goodput and end-to-end delay and lowers collision probability among control packets in two representative network scenarios

    Coalbursts in China: Theory, practice and management

    No full text
    Coalburst is one of the most serious disasters that threaten the safe production of coal mines, and this disaster is particularly serious in China. This paper presents an overview of coalbursts in China since 1980s. From the ''stress and energy'' and ''regional and local'' perspectives, the achievements in the theory, practice and management of coalbursts in China are systematically summarized. A theoretical system of coalbursts has been formed to reveal the deformational behavior of coalbursts and explain the mechanism of coalbursts. The occurrence conditions of coalbursts are put forward and the critical stress is obtained. The stress index method for risk evaluation of coalbursts before mining is proposed, and the deformation localization prediction method of coalbursts is put forward. The relationship between energy release and absorption in the process of coalbursts is found, and the prevention and control methods of coalbursts, including the regional method, the local method and support, are presented. The safety evaluation index of coalburst prevention and control is put forward. The integrated prevention and control method for coal and gas outbursts is proposed. The prevention and control technology and equipment of coalbursts have also been developed. Amongst them, the distribution law of the critical stress in China coalburst mines is discovered. The technology and equipment for monitoring, prevention and control of coalbursts, as well as for integrated prevention and control of combined coalbursts and other disasters, have been developed. The energy-absorbing and coalburst-preventing support technology for roadways is invented, and key engineering parameters of coalburst prevention and control are pointed out. In China, coalburst prevention and control laws and standards have been developed. Technical standards for coalbursts are formulated, statute and regulations for coal mines are established, and regulatory documents are promoted

    Analysis of Similarities and Differences between Acoustic Emission and Charge Signal Based on Fractal Characteristics of Coal Fracture

    No full text
    Rock burst is a catastrophic dynamic disaster caused by sudden failure and instability of coal, which brings threats to deep coal mining; the AE-charge signals and the fragment distribution are related to both mechanical properties of coal and disaster early warning directly. Hence, the variation of AE and charge induction during coal failure, fractal feature of coal fragments, and their relationship should be studied in depth. In this paper, uniaxial loading test was carried out for coal with bursting tendency samples produced by blocks cored from 800 m depth in Xiaoqing coal mine of the Tiefa Coal Group in northeast China; the fractal characteristics of specimens are obtained by using the statistical fractal method. The mechanics of similarities and differences between acoustic emission and charge signal is investigated by using loading experiments and theoretical analysis. It is found that the fragments of coal have good self-similarity properties; the fractal dimension of the specimens is in the range 2.085–2.521, the maximum range being 2.300–2.468, which is slightly higher than that of rock. The high-amplitude pulses of the acoustic emission and charge are concentrated in the macroscopic fissure development and expansion stage but they have asynchronous characteristics between them. The charge generation process is accompanied by the inhomogeneous deformation and sliding friction; the friction slip is the major one and is analysed theoretically. A theoretical model for the force-electric coupling relationship is established. The statistical results show that both the acoustic emission and the charge signal accumulation have a significantly proportional relationship with the fractal dimension. Both the acoustic emission and charge signal reveal coal breakage evolution process, which will help in obtaining the precursor information on coal failure. Furthermore, the monitoring results can predict the extent of coal mass instability

    Highly Sensitive p + n Metal Oxide Sensor Array for Low-Concentration Gas Detection

    No full text
    Nowadays, despite the easy fabrication and low cost of metal oxide gas sensors, it is still challenging for them to detect gases at low concentrations. In this study, resistance-matched p-type Cu2O and n-type Ga-doped ZnO, as well as p-type CdO/LaFeO3 and n-type CdO/Sn-doped ZnO sensors were prepared and integrated into p + n sensor arrays to enhance their gas-sensing performance. The materials were characterized by scanning electron microscopy, transmittance electron microscopy, and X-ray diffractometry, and gas-sensing properties were measured using ethanol and acetone as probes. The results showed that compared with individual gas sensors, the response of the sensor array was greatly enhanced and similar to the gas response product of the p- and n-type gas sensors. Specifically, the highly sensitive CdO/LaFeO3 and CdO/Sn-ZnO sensor array had a high response of 21 to 1 ppm ethanol and 14 to 1 ppm acetone, with detection limits of <0.1 ppm. The results show the effect of sensor array integration by matching the two sensor resistances, facilitating the detection of gas at a low concentration

    Genotypic and Phenotypic Diversity of Endemic Golden Camellias Collected from China

    No full text
    Not only are the plants of the golden camellia group examples of high-quality camellia germplasm, but they are also a plant group with rich medicinal and nutritional value, and these plants are used as food, cosmetics and traditional medicine in China. There are approximately 50 species in this group around the world, and more than 30 species of golden camellia plants have been listed in China. The leaves and flowers of these species have similar shapes, and as such, they are often confused as the same species. Our study used simplified genome sequencing technology to construct a phylogenetic tree of plants in the Chinese golden camellia group, and we also described the evolutionary relationships. At the same time, the secondary metabolic indexes of the total phenols, total flavonoids, total anthocyanins and ellagic acid in the leaves were determined, and principal component clustering analysis was also performed. The results showed that the phylogenetic relationship and genetic distance among the plant species of Chinese golden camellia group plants were fully revealed. The cluster analysis of chemical secondary metabolism and genetic phylogenetic trees showed some of the same trends, thereby indicating that secondary metabolism golden camellia can be used as biomarkers for golden camellia. The research results provide phylogenetic information for the genotype and performance diversity of the golden camellia that is regionally distributed in China, as well as provide a theoretical basis for the research and development of potential bioactive substances

    Templated Synthesis of Cu<sub>2</sub>S Hollow Structures for Highly Active Ozone Decomposition

    No full text
    Nowadays, it is highly desired to develop highly active and humidity-resistive ozone decomposition catalysts to eliminate the ozone contaminant, one of the primary pollutants in the air. In this work, a series of Cu2S hollow structured materials were rapidly synthesized using different structured Cu2O templates. The Cu2S from porous Cu2O showed the highest ozone catalytic decomposition efficiency of >95% to 400 ppm ozone with a weight hourly space velocity of 480,000 cm3·g−1·h−1 in dry air. Importantly, the conversion remained >85% in a high relative humidity of 90%. The mechanism was explored by diffusive reflectance infrared spectroscopy which showed the decomposition intermediate of O22−, and X-ray photoelectron spectroscopy revealed the dual active site of both Cu and S. The EPR and UPS characterization results also explained the superiority of porous Cu2S catalysts from the material itself. All these results show the effective decomposition of ozone by Cu2S, especially in harsh environments, promising for active ozone elimination

    Current Progress and Outlook of Nano-Based Hydrogel Dressings for Wound Healing

    No full text
    Wound dressing is an important tool for wound management. Designing wound dressings by combining various novel materials and drugs to optimize the peri-wound environment and promote wound healing is a novel concept. Hydrogels feature good ductility, high water content, and favorable oxygen transport, which makes them become some of the most promising materials for wound dressings. In addition, nanomaterials exhibit superior biodegradability, biocompatibility, and colloidal stability in wound healing and can play a role in promoting healing through their nanoscale properties or as carriers of other drugs. By combining the advantages of both technologies, several outstanding and efficient wound dressings have been developed. In this paper, we classify nano-based hydrogel dressings into four categories: hydrogel dressings loaded with a nanoantibacterial drug; hydrogel dressings loaded with oxygen-delivering nanomedicines; hydrogel dressings loaded with nanonucleic acid drugs; and hydrogel dressings loaded with other nanodelivered drugs. The design ideas, advantages, and challenges of these nano-based hydrogel wound dressings are reviewed and analyzed. Finally, we envisaged possible future directions for wound dressings in the context of relevant scientific and technological advances, which we hope will inform further research in wound management
    corecore