88 research outputs found

    Cross-position Activity Recognition with Stratified Transfer Learning

    Full text link
    Human activity recognition aims to recognize the activities of daily living by utilizing the sensors on different body parts. However, when the labeled data from a certain body position (i.e. target domain) is missing, how to leverage the data from other positions (i.e. source domain) to help learn the activity labels of this position? When there are several source domains available, it is often difficult to select the most similar source domain to the target domain. With the selected source domain, we need to perform accurate knowledge transfer between domains. Existing methods only learn the global distance between domains while ignoring the local property. In this paper, we propose a \textit{Stratified Transfer Learning} (STL) framework to perform both source domain selection and knowledge transfer. STL is based on our proposed \textit{Stratified} distance to capture the local property of domains. STL consists of two components: Stratified Domain Selection (STL-SDS) can select the most similar source domain to the target domain; Stratified Activity Transfer (STL-SAT) is able to perform accurate knowledge transfer. Extensive experiments on three public activity recognition datasets demonstrate the superiority of STL. Furthermore, we extensively investigate the performance of transfer learning across different degrees of similarities and activity levels between domains. We also discuss the potential applications of STL in other fields of pervasive computing for future research.Comment: Submit to Pervasive and Mobile Computing as an extension to PerCom 18 paper; First revision. arXiv admin note: substantial text overlap with arXiv:1801.0082

    FIXED: Frustratingly Easy Domain Generalization with Mixup

    Full text link
    Domain generalization (DG) aims to learn a generalizable model from multiple training domains such that it can perform well on unseen target domains. A popular strategy is to augment training data to benefit generalization through methods such as Mixup~\cite{zhang2018mixup}. While the vanilla Mixup can be directly applied, theoretical and empirical investigations uncover several shortcomings that limit its performance. Firstly, Mixup cannot effectively identify the domain and class information that can be used for learning invariant representations. Secondly, Mixup may introduce synthetic noisy data points via random interpolation, which lowers its discrimination capability. Based on the analysis, we propose a simple yet effective enhancement for Mixup-based DG, namely domain-invariant Feature mIXup (FIX). It learns domain-invariant representations for Mixup. To further enhance discrimination, we leverage existing techniques to enlarge margins among classes to further propose the domain-invariant Feature MIXup with Enhanced Discrimination (FIXED) approach. We present theoretical insights about guarantees on its effectiveness. Extensive experiments on seven public datasets across two modalities including image classification (Digits-DG, PACS, Office-Home) and time series (DSADS, PAMAP2, UCI-HAR, and USC-HAD) demonstrate that our approach significantly outperforms nine state-of-the-art related methods, beating the best performing baseline by 6.5\% on average in terms of test accuracy. Code is available at: https://github.com/jindongwang/transferlearning/tree/master/code/deep/fixed.Comment: First Conference on Parsimony and Learning (CPAL) 2024; code for DG at: https://github.com/jindongwang/transferlearning/tree/master/code/DeepD

    The Main Progress of Perovskite Solar Cells in 2020–2021

    Get PDF
    Perovskite solar cells (PSCs) emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world. Both the efficiency and stability of PSCs have increased steadily in recent years, and the research on reducing lead leakage and developing eco-friendly lead-free perovskites pushes forward the commercialization of PSCs step by step. This review summarizes the main progress of PSCs in 2020 and 2021 from the aspects of efficiency, stability, perovskite-based tandem devices, and lead-free PSCs. Moreover, a brief discussion on the development of PSC modules and its challenges toward practical application is provided
    • …
    corecore