161 research outputs found

    Polarized linewidth-controllable double-trapping electromagnetically induced transparency spectra in a resonant plasmon nanocavity

    Get PDF
    Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-L quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000325349300008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Multidisciplinary SciencesSCI(E)PubMed11ARTICLE2879

    Exome sequencing revealed PDE11A as a novel candidate gene for early-onset Alzheimer\u27s disease

    Get PDF
    To identify novel risk genes and better understand the molecular pathway underlying Alzheimer\u27s disease (AD), whole-exome sequencing was performed in 215 early-onset AD (EOAD) patients and 255 unrelated healthy controls of Han Chinese ethnicity. Subsequent validation, computational annotation and in vitro functional studies were performed to evaluate the role of candidate variants in EOAD. We identified two rare missense variants in the phosphodiesterase 11A (PDE11A) gene in individuals with EOAD. Both variants are located in evolutionarily highly conserved amino acids, are predicted to alter the protein conformation and are classified as pathogenic. Furthermore, we found significantly decreased protein levels of PDE11A in brain samples of AD patients. Expression of PDE11A variants and knockdown experiments with specific short hairpin RNA (shRNA) for PDE11A both resulted in an increase of AD-associated Tau hyperphosphorylation at multiple epitopes in vitro. PDE11A variants or PDE11A shRNA also caused increased cyclic adenosine monophosphate (cAMP) levels, protein kinase A (PKA) activation and cAMP response element-binding protein phosphorylation. In addition, pretreatment with a PKA inhibitor (H89) suppressed PDE11A variant-induced Tau phosphorylation formation. This study offers insight into the involvement of Tau phosphorylation via the cAMP/PKA pathway in EOAD pathogenesis and provides a potential new target for intervention

    Time series clustering of mRNA and lncRNA expression during osteogenic differentiation of periodontal ligament stem cells

    Get PDF
    Background Long noncoding RNAs (lncRNAs) are regulatory molecules that participate in biological processes such as stem cell differentiation. Periodontal ligament stem cells (PDLSCs) exhibit great potential for the regeneration of periodontal tissue and the formation of new bone. However, although several lncRNAs have been found to be involved in the osteogenic differentiation of PDLSCs, the temporal transcriptomic landscapes of mRNAs and lncRNAs need to be mapped to obtain a complete picture of osteoblast differentiation. In this study, we aimed to characterize the time-course expression patterns of lncRNAs during the osteogenic differentiation of PDLSCs and to identify the lncRNAs that are related to osteoblastic differentiation. Methods We cultured PDLSCs in an osteogenic medium for 3, 7, or 14 days. We then used RNA sequencing (RNA-seq) to analyze the expression of the coding and non-coding transcripts in the PDLSCs during osteogenic differentiation. We also utilized short time-series expression miner (STEM) to describe the temporal patterns of the mRNAs and lncRNAs. We then performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses to assess the biological relevance of genes in each profile, and used quantitative real-time PCR (qRT-PCR) to validate the differentially expressed mRNAs and lncRNAs that were associated with osteoblast differentiation. Lastly, we performed a knock down of two lncRNAs, MEG8, and MIR22HG, and evaluated the expression of osteogenic markers. Results When PDLSCs were differentiated to osteoblasts, mRNAs associated with bone remodeling, cell differentiation, and cell apoptosis were upregulated while genes associated with cell proliferation were downregulated. lncRNAs showed stage-specific expression, and more than 200 lncRNAs were differentially expressed between the undifferentiated and osteogenically differentiated PDLSCs. Using STEM, we identified 25 temporal gene expression profiles, among which 14 mRNA and eight lncRNA profiles were statistically significant. We found that genes in pattern 12 were associated with osteoblast differentiation. The expression patterns of osteogenic mRNAs (COL6A1, VCAN, RRBP1, and CREB3L1) and lncRNAs (MEG8 and MIR22HG) were consistent between the qRT-PCR and RNA-seq results. Moreover, the knockdown of MEG8 and MIR22HG significantly decreased the expression of osteogenic markers (runt-related transcription factor 2 and osteocalcin). Discussion During the osteogenic differentiation of PDLSCs, both mRNAs and lncRNAs showed stage-specific expression. lncRNAs MEG8 and MIR22HG showed a high correlation with osteoblastogenesis. Our results can be used to gain a more comprehensive understanding of the molecular events regulating osteoblast differentiation and the identification of functional lncRNAs in PDLSCs

    Redox properties of human hemoglobin in complex with fractionated dimeric and polymeric human haptoglobin

    Get PDF
    Haptoglobin (Hp) is an abundant and conserved plasma glycoprotein, which binds acellular adult hemoglobin (Hb) dimers with high affinity and facilitates their rapid clearance from circulation after hemolysis. Humans possess three main phenotypes of Hp, designated Hp 1-1, Hp 2-1, and Hp 2-2. These variants exhibit diverse structural configurations and have been reported to be functionally nonequivalent. We have investigated the functional and redox properties of Hb–Hp complexes prepared using commercially fractionated Hp and found that all forms exhibit similar behavior. The rate of Hb dimer binding to Hp occurs with bimolecular rate constants of ~0.9 μM−1 s−1, irrespective of the type of Hp assayed. Although Hp binding does accelerate the observed rate of HbO2 autoxidation by dissociating Hb tetramers into dimers, the rate observed for these bound dimers is three- to fourfold slower than that of Hb dimers free in solution. Co-incubation of ferric Hb with any form of Hp inhibits heme loss to below detectable levels. Intrinsic redox potentials (E1/2) of the ferric/ferrous pair of each Hb–Hp complex are similar, varying from +54 to +59 mV (vs NHE), and are essentially the same as reported by us previously for Hb–Hp complexes prepared from unfractionated Hp. All Hb–Hp complexes generate similar high amounts of ferryl Hb after exposure to hydrogen peroxide. Electron paramagnetic resonance data indicate that the yields of protein-based radicals during this process are approximately 4 to 5% and are unaffected by the variant of Hp assayed. These data indicate that the Hp fractions examined are equivalent to one another with respect to Hb binding and associated stability and redox properties and that this result should be taken into account in the design of phenotype-specific Hp therapeutics aimed at countering Hb-mediated vascular disease

    Clinical significance of S100B protein in pregnant woman with early- onset severe preeclampsia

    Get PDF
    Objectives: Preeclampsia is one of the most feared complications of pregnancy, which can progress rapidly to serious complications such as death of both mother and fetus. To present, the leading cause of preeclampsia is still debated. The purpose of this article was to explore the clinical significance of S100B protein, a kind of Ca2+ -sensor protein, in the early-onset severe preeclampsia. Material and methods: Nine pregnant women with early-onset severe preeclampsia (the study group) and 13 healthy pregnant women (the control group) were included in this study. The level of S100B in the amniotic fluid, maternal blood, and umbilical cord blood were detected by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance imaging (SPRi) methods. Diagnostic values of S100B for early-onset severe preeclampsia were assessed by Receiver Operating Characteristic (ROC) curve analysis. Results: The levels of S100B in maternal blood and amniotic fluid in the study group were higher than those in the control group (p < 0.05). ROC curve analysis showed that S100B detected by SPRi method (SPRi-S100B) showed a cut-off level of 181 ng/mL with sensitivity of 100%, a specificity of 84.6%, and a Youden index of 0.846 in the maternal blood, which had better clinical significance and diagnostic value (at than that detected by ELISA (ELISA-S100B).   Conclusions: The levels of S100B detected by SPRi in maternal blood can indicate early-onset severe preeclampsia and perinatal brain injury

    Potential genetic therapies based on m6A methylation for skin regeneration: Wound healing and scars/keloids

    Get PDF
    Skin wound healing is a complex and multistage process, where any abnormalities at any stage can result in the accumulation of non-functional fibrotic tissue, leading to the formation of skin scars. Epigenetic modifications play a crucial role in regulating gene expression, inhibiting cell fate determination, and responding to environmental stimuli. m6A methylation is the most common post-transcriptional modification of eukaryotic mRNAs and long non-coding RNAs. However, it remains unclear how RNA methylation controls cell fate in different physiological environments. This review aims to discuss the current understanding of the regulatory pathways of RNA methylation in skin wound healing and their therapeutic implications with a focus on the specific mechanisms involved
    • …
    corecore