19 research outputs found

    Metabolic Transition of Milk Triacylglycerol Synthesis in Response to Varying Levels of Three 18-Carbon Fatty Acids in Porcine Mammary Epithelial Cells

    No full text
    This study aimed to examine the effects of increasing levels of three 18-carbon fatty acids (stearate, oleate and linoleate) on mammary lipogenesis, and to evaluate their effects on the milk lipogenic pathway in porcine mammary epithelial cells (pMECs). We found that increasing the three of 18-carbon fatty acids enhanced the cellular lipid synthesis in a dose-dependent manner, as reflected by the increased (triacylglycerol) TAG content and cytosolic lipid droplets in pMECs. The increased lipid synthesis by the three 18-carbon fatty acids was probably caused by the up-regulated expression of major genes associated with milk fat biosynthesis, including CD36 (long chain fatty acid uptake); GPAM, AGPAT6, DGAT1 (TAG synthesis); PLIN2 (lipid droplet formation); and PPARγ (regulation of transcription). Western blot analysis of CD36, DGAT1 and PPARγ proteins confirmed this increase with the increasing incubation of 18-carbon fatty acids. Interestingly, the mRNA expressions of ACSL3 and FABP3 (fatty acids intracellular activation and transport) were differentially affected by the three 18-carbon fatty acids. The cellular mRNA expressions of ACSL3 and FABP3 were increased by stearate, but were decreased by oleate or linoleate. However, the genes involved in fatty acid de novo synthesis (ACACA and FASN) and the regulation of transcription (SREBP1) were decreased by incubation with increasing concentrations of 18-carbon fatty acids. In conclusion, our findings provided evidence that 18-carbon fatty acids (stearate, oleate and linoleate) significantly increased cytosolic TAG accumulation in a dose-dependent manner, probably by promoting lipogenic genes and proteins that regulate the channeling of fatty acids towards milk TAG synthesis in pMECs

    Metabolic Transition of Milk Triacylglycerol Synthesis in Response to Varying Levels of Three 18-Carbon Fatty Acids in Porcine Mammary Epithelial Cells

    No full text
    This study aimed to examine the effects of increasing levels of three 18-carbon fatty acids (stearate, oleate and linoleate) on mammary lipogenesis, and to evaluate their effects on the milk lipogenic pathway in porcine mammary epithelial cells (pMECs). We found that increasing the three of 18-carbon fatty acids enhanced the cellular lipid synthesis in a dose-dependent manner, as reflected by the increased (triacylglycerol) TAG content and cytosolic lipid droplets in pMECs. The increased lipid synthesis by the three 18-carbon fatty acids was probably caused by the up-regulated expression of major genes associated with milk fat biosynthesis, including CD36 (long chain fatty acid uptake); GPAM, AGPAT6, DGAT1 (TAG synthesis); PLIN2 (lipid droplet formation); and PPARγ (regulation of transcription). Western blot analysis of CD36, DGAT1 and PPARγ proteins confirmed this increase with the increasing incubation of 18-carbon fatty acids. Interestingly, the mRNA expressions of ACSL3 and FABP3 (fatty acids intracellular activation and transport) were differentially affected by the three 18-carbon fatty acids. The cellular mRNA expressions of ACSL3 and FABP3 were increased by stearate, but were decreased by oleate or linoleate. However, the genes involved in fatty acid de novo synthesis (ACACA and FASN) and the regulation of transcription (SREBP1) were decreased by incubation with increasing concentrations of 18-carbon fatty acids. In conclusion, our findings provided evidence that 18-carbon fatty acids (stearate, oleate and linoleate) significantly increased cytosolic TAG accumulation in a dose-dependent manner, probably by promoting lipogenic genes and proteins that regulate the channeling of fatty acids towards milk TAG synthesis in pMECs

    GLUT1 and lactose synthetase are critical genes for lactose synthesis in lactating sows

    No full text
    Abstract Background Lactose synthesis rate is an important factor in milk production and quality in mammals. Understanding the lactose synthesis mechanism is crucial for the improvement of milk quantity and quality. However, research on the temporal gene changes regarding lactose synthesis during the whole lactation is still limited. The objective of this study was to determine gene expression profiles related to lactose synthesis in sows during lactation, and further identify the critical steps or key factors in the lactose synthesis pathway. Methods To determine the temporal change of factors related to lactose synthesis in sows, milk from eight multiparous Yorkshire sows (parity 3 to 6) was collected at 0 h, 2 h, 6 h, 12 h, 24 h, day 2, 3, 4, 7, 14, and 21 after birth of the first piglet. Lactose content, prolactin and progesterone concentration, and gene or protein expression related to lactose synthesis were measured. Results The lactose yield increased gradually from D2 to D21 and reached a maximum at D14 (3-fold from D2) during lactation (P < 0.05). A similar trend was observed in IGF-1 and insulin concentrations in milk, both of which were greatest at D3 with a subsequent decrease during middle to late lactation. Conversely, milk prolactin and progesterone concentrations moderately decreased with the progression of lactation. The mRNA or protein expressions related to glucose transportation (GLUT1), glucose-galactose interconversion (HK1 and UGP2), UDP-galactose transportation (SLC35A2), and lactose synthetase (LALBA and B4GALT1) in the lactose synthesis pathway were significantly upregulated during early to middle lactation and plateaued by late lactation (P < 0.05). Conclusions These novel findings suggest that the increased lactose synthesis in lactation was related to the coordinated upregulation of genes or enzymes in the lactose synthesis pathway, and glucose transportation (GLUT1) and lactose synthetase (LALBA and B4GALT1) might be the critical steps in the lactose synthesis pathway of sows during lactation

    Metabolic transition of milk triacylglycerol synthesis in response to varying levels of palmitate in porcine mammary epithelial cells

    No full text
    Abstract Background Milk in mammals is a key source of lipids for offspring, providing both critical energy and essential fatty acids. For lactating sows, palmitic acid is one of the most abundant fatty acids in milk, providing 10~12% of the suckling pig total dietary energy supply. However, the effects of exogenous palmitic acid on milk fat synthesis in sow mammary glands are not well-known. In this study, we investigated the effects of palmitic acid on lipogenic genes in porcine mammary epithelial cells (pMECs) to explore the role of exogenous palmitic acid in mediating milk triacylglycerols (TAG) synthesis. Methods Porcine mammary epithelial cells were cultured for 24 h in the presence of different concentrations of palmitate (0, 25, 50, 100, 200, 400, and 600 μM). The effect of palmitate on cell viability was tested via MTT assay. Intracellular lipid accumulation was measured through Oil Red O staining, and TAG levels were quantified by enzymatic colorimetric methods. Expression of genes and proteins involved in milk fat biosynthesis were assayed with quantitative real-time polymerase chain reaction (qPCR) and Western blotting, respectively. Results Incubation with palmitate promoted cellular lipid synthesis in a dose-dependent manner, as reflected by the increased TAG content and enhanced formation of cytosolic lipid droplets. The increased lipid synthesis by palmitate was probably attributable to the upregulated mRNA expression of genes associated with milk fat biosynthesis, including long-chain fatty acid uptake (LPL, CD36), intracellular activation and transport (ACSL3, FABP3), TAG synthesis (GPAM, AGPAT6, DGAT1), lipid droplet formation (PLIN2), and regulation of transcription (PPARγ). Western blot analysis of CD36 and DGAT1 proteins confirmed the increased lipid synthesis with increasing incubation of palmitate. However, the genes involved in fatty acid de novo synthesis (ACACA, FASN), fatty acid desaturation (SCD), and regulation of transcription (SREBP1, INSIG1) were inversely affected by incubation with increasing concentrations of palmitate. Western blot analysis of ACACA protein confirmed this decrease associated with increasing levels of palmitate. Conclusions Results from this study suggest that palmitate stimulated the cytosolic TAG accumulation in pMECs, probably by promoting lipogenic genes and proteins that are involved in lipid synthesis. However, addition of palmitate decreased the fatty acid de novo synthesis in pMECs

    Ligand-directed Photocatalysts and Far-red Light Enable Catalytic Bioorthogonal Uncaging inside Live Cells

    No full text
    Described are ligand-directed catalysts for live-cell, photocatalytic activation of bioorthogonal chemistry. Catalytic groups are localized via a tethered ligand either to DNA or to tubulin, and red-light (660 nm) photocatalysis is used to initiate a cascade of DHTz-oxidation, intramolecular Diels-Alder reaction, and elimination to release phenolic compounds. Silarhodamine (SiR) dyes, more conventionally used as biological fluorophores, serve as photocatalysts that have high cytocompatibility and produce minimal singlet oxygen. Commercially-available conjugates of Hoechst dye (SiR-H) and Taxol (SiR-T) are used to localize SiR to the nucleus and tubulin, respectively. Computation was used to assist the design of a new class of redox-activated photocage to release either phenol or n-CA4, a microtubule-destabilizing agent. In model studies, uncaging is complete within 5 min using only 2 µM of SiR and 40 µM of the photocage. In situ spectroscopic studies support a mechanism involving rapid intramolecular Diels-Alder reaction and a rate determining elimination step. In cellular studies, this uncaging process is successful at low concentration of both the photocage (25 nM) and the SiR-H dye (500 nM). Uncaging n-CA4 causes microtubule depolymerization and an accompanying reduction in cell area. Control studies demonstrate that SiR-H catalyzes uncaging inside the cell, and not in the extracellular environment. With SiR-T, the same dye serves as photocatalyst and the fluorescent reporter for tubulin depolymerization, and with confocal microscopy it was possible to visualize tubulin depolymerization in real time as the result of photocatalytic uncaging in live cells

    Divergent Synthesis of Monosubstituted and Unsymmetrical 3,6- Disubstituted Tetrazines from Carboxylic Ester Precursors

    No full text
    As tetrazines are important tools to the field of bioorthogonal chemistry, there is a need for new approaches to synthesize unsymmetrical and 3-monosubstituted tetrazines. Described here is a general, one-pot method for converting (3methyloxetan-3-yl)methyl carboxylic esters into 3thiomethyltetrazines. These versatile intermediates were applied as a platform for the synthesis of unsymmetrical tetrazines via Pdcatalyzed cross-coupling and in the first example of catalytic thioether reduction to access monosubstituted tetrazines. The method enables the development of new tetrazines possessing a favorable combination of kinetics, small size and hydrophilicity. The chemistry was applied to a broad range of aliphatic and aromatic ester precursors and to the synthesis of heterocycles including BODIPY fluorophores and biotin. In addition, a series of tetrazine probes for monoacylglycerol lipase (MAGL) were synthesized and the most reactive one was applied in labeling of endogenous MAGL in live cells<br /

    Recent progress of porcine milk components and mammary gland function

    No full text
    Abstract As the only nutritional source for newborn piglets, porcine colostrum and milk contain critical nutritional and immunological components including carbohydrates, lipids, and proteins (immunoglobulins). However, porcine milk composition is more complex than these three components. Recently, scientists identified additional and novel components of sow colostrum and milk, including exosomes, oligosaccharides, and bacteria, which possibly act as biological signals and modulate the intestinal environment and immune status in piglets and later in life. Evaluation of these nutritional and non-nutritional components in porcine milk will help better understand the nutritional and biological function of porcine colostrum and milk. Furthermore, some important functions of the porcine mammary gland have been reported in recent published literature. These preliminary studies hypothesized how glucose, amino acids, and fatty acids are transported from maternal blood to the porcine mammary gland for milk synthesis. Therefore, we summarized recent reports on sow milk composition and porcine mammary gland function in this review, with particular emphasis on macronutrient transfer and synthesis mechanisms, which might offer a possible approach for regulation of milk synthesis in the future

    TMF: A GNSS Tropospheric Mapping Function for the Asymmetrical Neutral Atmosphere

    No full text
    Tropospheric mapping function plays a vital role in the high precision Global Navigation Satellites Systems (GNSS) data processing for positioning. However, most mapping functions are derived under the assumption that atmospheric refractivity is spherically symmetric. In this paper, the pressure, temperature, and humidity fields of ERA5 data with the highest spatio-temporal resolution available from the European Centre for Medium-range Weather Forecast (ECMWF) were utilized to compute ray-traced delays by the software WHURT. Results reveal the universal asymmetry of the hydrostatic and wet tropospheric delays. To accurately represent these highly variable delays, a new mapping function that depends on elevation and azimuth angles—Tilting Mapping Function (TMF)—was applied. The basic idea is to assume an angle between the tropospheric zenith direction and the geometric zenith direction. Ray-traced delays served as the reference values. TMF coefficients were fitted by Levenberg–Marquardt nonlinear least-squares method. Comparisons demonstrate that the TMF can improve the MF-derived slant delay’s accuracy by 73%, 54% and 29% at the 5° elevation angle, against mapping functions based on the VMF3 concept, without, with a total and separate estimation of gradients, respectively. If all coefficients of a symmetric mapping function are determined together with gradients by a least-square fit at sufficient elevation angles, the accuracy is only 6% lower than TMF. By adopting the b and c coefficients of VMF3, TMF can keep its high accuracy with less computational cost, which could be meaningful for large-scale computing

    Discovery of l-threonine transaldolases for enhanced biosynthesis of beta-hydroxylated amino acids

    No full text
    Abstract Beta-hydroxy non-standard amino acids (β-OH-nsAAs) have utility as small molecule drugs, precursors for beta-lactone antibiotics, and building blocks for polypeptides. While the L-threonine transaldolase (TTA), ObiH, is a promising enzyme for β-OH-nsAA biosynthesis, little is known about other natural TTA sequences. We ascertained the specificity of the TTA enzyme class more comprehensively by characterizing 12 candidate TTA gene products across a wide range (20-80%) of sequence identities. We found that addition of a solubility tag substantially enhanced the soluble protein expression level within this difficult-to-express enzyme family. Using an optimized coupled enzyme assay, we identified six TTAs, including one with less than 30% sequence identity to ObiH that exhibits broader substrate scope, two-fold higher L-Threonine (L-Thr) affinity, and five-fold faster initial reaction rates under conditions tested. We harnessed these TTAs for first-time bioproduction of β-OH-nsAAs with handles for bio-orthogonal conjugation from supplemented precursors during aerobic fermentation of engineered Escherichia coli, where we observed that higher affinity of the TTA for L-Thr increased titer. Overall, our work reveals an unexpectedly high level of sequence diversity and broad substrate specificity in an enzyme family whose members play key roles in the biosynthesis of therapeutic natural products that could benefit from chemical diversification
    corecore