4 research outputs found

    Developmental changes in neonatal hemodynamics during tactile stimulation using whole-head functional near-infrared spectroscopy

    No full text
    Neural-activity-associated hemodynamic changes have been used to noninvasively measure brain function in the early developmental stages. However, the temporal changes in their hemodynamics are not always consistent with adults. Studies have not evaluated developmental changes for a long period using the same stimuli; therefore, this study examined the normalized relative changes in oxygenated hemoglobin (Δ[oxy-Hb]) in full-term infants and compared them with neonates up to 10 months of age during the administration of tactile vibration stimuli to their limbs using whole-head functional near-infrared spectroscopy. The time to peak of normalized Δ[oxy-Hb] was not affected by age. The amplitude of normalized Δ[oxy-Hb] showed an effect of age in broader areas, including sensorimotor-related but excluding supplementary motor area; the amplitude of normalized Δ[oxy-Hb] decreased the most in the 1–2-month-old group and later increased with development. We hypothesized that these results may reflect developmental changes in neural activity, vasculature, and blood oxygenation

    Measurement of the Absolute Value of Cerebral Blood Volume and Optical Properties in Term Neonates Immediately after Birth Using Near-Infrared Time-Resolved Spectroscopy: A Preliminary Observation Study

    No full text
    The aim of this study was to use near-infrared time-resolved spectroscopy (TRS) to determine the absolute values of cerebral blood volume (CBV) and cerebral hemoglobin oxygen saturation (ScO2) during the immediate transition period in term neonates and the changes in optical properties such as the differential pathlength factor (DPF) and reduced scattering coefficient (μs’). CBV and ScO2 were measured using TRS during the first 15 min after birth by vaginal delivery in term neonates who did not need resuscitation. Within 2−3 min after birth, CBV showed various changes such as increases or decreases, followed by a gradual decrease until 15 min and then stability (mean (SD) mL/100 g brain: 2 min, 3.09 (0.74); 3 min, 3.01 (0.77); 5 min, 2.69 (0.77); 10 min, 2.40 (0.61), 15 min, 2.08 (0.47)). ScO2 showed a gradual increase, then kept increasing or became a stable reading. The DPF and μs’ values (mean (SD) at 762, 800, and 836 nm) were stable during the first 15 min after birth (DPF: 4.47 (0.38), 4.41 (0.32), and 4.06 (0.28)/cm; μs’: 6.54 (0.67), 5.82 (0.84), and 5.43 (0.95)/cm). Accordingly, we proved that TRS can stably measure cerebral hemodynamics, despite the dramatic physiological changes occurring at this time in the labor room
    corecore