62 research outputs found

    Development of a large bore superconducting magnet with narrow liquid helium channels

    No full text
    A large bore NbTi superconducting magnet is designed, manufactured and tested. The superconducting magnet has an inner diameter of 460 mm, outer diameter of 600 mm and height of 540 mm. The magnet is dry wound using rectangular and round superconducting wires with their dimensions of 1.3 times 2.0 mm and Oslash1.3 mm respectively. In order to improve helium cooling effect, narrow liquid helium channels are set between adjacent layers. The magnet can generate 4 T central magnetic field at the designed operating current of 305 A. The magnet has been tested in a compact cryostat. Experimental results show that the superconducting magnet reached the designed magnetic performance. Details of the magnet design, fabrication and test are described in this paper

    TITANIUM DISULFIDE AS A POTENTIAL INTERCALATION CATHODE FOR ZINC ION BATTERIES

    No full text
    Master'sMASTER OF ENGINEERING (FOE

    Design of a 30-T Superconducting Magnet for Quantum Oscillation Application

    No full text

    Recent Development of the 25 T All-Superconducting Magnet at IEE

    No full text

    Strain Transfer Characteristics of Resistance Strain-Type Transducer Using Elastic-Mechanical Shear Lag Theory

    No full text
    The strain transfer characteristics of resistance strain gauge are theoretically investigated. A resistance strain-type transducer is modeled to be a four-layer and two-glue (FLTG) structure model, which comprises successively the surface of an elastomer sensitive element, a ground adhesive glue, a film substrate layer, an upper adhesive glue, a sensitive grids layer, and a polymer cover. The FLTG model is studied in elastic–mechanical shear lag theory, and the strain transfer progress in a resistance strain-type transducer is described. The strain transitional zone (STZ) is defined and the strain transfer ratio (STR) of the FLTG structure is formulated. The dependences of the STR and STZ on both the dimensional sizes of the adhesive glue and structural parameters are calculated. The results indicate that the width, thickness and shear modulus of the ground adhesive glue have a greater influence on the STZ ratio. To ensure that the resistance strain gauge has excellent strain transfer performance and low hysteresis, it is recommended that the paste thickness should be strictly controlled, and the STZ ratio should be less than 10%. Moreover, the STR strongly depends on the length and width of the sensitive grids

    Dependance of Gauge Factor on Micro-Morphology of Sensitive Grids in Resistive Strain Gauges

    No full text
    The effect of micro-morphology of resistive strain gauges on gauge factor was investigated numerically and experimentally. Based on the observed dimensional parameters of various commercial resistive strain gauges, a modeling method had been proposed to reconstruct the rough sidewall on the sensitive grids. Both the amplitude and period of sidewall profiles are normalized by the sensitive grid width. The relative resistance change of the strain gauge model with varying sidewall profiles was calculated. The results indicate that the micro-morphology on the sidewall profile led to the deviation of the relative resistance change and the decrease in gauge factor. To verify these conclusions, two groups of the strain gauge samples with different qualities of sidewall profiles have been manufactured, and both their relative resistance changes and gauge factors were measured by a testing apparatus for strain gauge parameters. It turned out that the experimental results are also consistent with the simulations. Under the loading strain within 1000 μm/m, the average gauge factors of these two groups of samples are 2.126 and 2.106, respectively, the samples with rougher profiles have lower values in gauge factors. The reduction in the gauge factor decreases the sensitivity by 2.0%. Our work shows that the sidewall micro-morphology on sensitive grids plays a role in the change of the gauge factor. The observed phenomena help derive correction methods for strain gauge measurements and predict the measurement errors coming from the local and global reinforcement effects

    Dependence of Creep Strain and Fatigue Behavior on Surface Characteristics of Resistive Strain Gauges

    No full text
    Creep behavior and fatigue life are important performance indexes that affect the long-term stability of resistive strain gauges. The resistive strain gauges, fabricated with wet etching and resistance trimming, present micro-morphology such as textures and uneven edges on the surface and side-wall profile of sensitive grids. This paper observed the micro-morphology of the sensitive grids by microscope and analyzed its range of geometric dimensions. A sine function was used to establish equivalent geometric models for the surface textures and side-wall profile. Based on time hardening theory and the S–N curve, the dependence of micro-morphology of metal resistive strain gauges on creep behavior and fatigue life was studied. The results indicate that the roughness of micro-morphology has an influence on creep behavior and fatigue life. The surface textures and side-wall profile lead to the increase of creep strain and the decrease of fatigue life in varying degrees. When 60% of the ultimate stress of the strain gauges is loaded, the average creep strain in steady-state calculated by the maximum roughness of the side-wall profile reaches up to 6.95 times that of the perfect flat surface. Under the condition of loading 70% of the ultimate stress and the same roughness, the fatigue life led by side-wall profile could be reduced to 1/25 of the textured surface. The obtained achievements promote an understanding for optimizing the fabrication process of resistive strain gauges as well as developing high-precision and long-life force sensors

    Combination of clinical information and radiomics models for the differentiation of acute simple appendicitis and non simple appendicitis on CT images

    No full text
    Abstract To investigate the radiomics models for the differentiation of simple and non-simple acute appendicitis. This study retrospectively included 334 appendectomy cases (76 simple and 258 non-simple cases) for acute appendicitis. These cases were divided into training (n = 106) and test cohorts (n = 228). A radiomics model was developed using the radiomic features of the appendix area on CT images as the input variables. A CT model was developed using the clinical and CT features as the input variables. A combined model was developed by combining the radiomics model and clinical information. These models were tested, and their performance was evaluated by receiver operating characteristic curves and decision curve analysis (DCA). The variables independently associated with non-simple appendicitis in the combined model were body temperature, age, percentage of neutrophils and Rad-score. The AUC of the combined model was significantly higher than that of the CT model (P = 0.041). The AUC of the radiomics model was also higher than that of the CT model but did not reach a level of statistical significance (P = 0.053). DCA showed that all three models had a higher net benefit (NB) than the default strategies, and the combined model presented the highest NB. A nomogram of the combined model was developed as the graphical representation of the final model. It is feasible to use the combined information of clinical and CT radiomics models for the differentiation of simple and non-simple acute appendicitis
    corecore