21 research outputs found

    5-BDBD ameliorates an OVA-induced allergic asthma by the reduction of Th2 cytokines production

    Get PDF
    Objective(s): P2X4R is expressed in immunocyte and lung tissues. It has been a focus in inflammatory responses recently. This study investigated whether blockage of P2X4R attenuates allergic inflammation by modulating T cell response in ovalbumin-sensitized mice. Materials and Methods: Ovalbumin was used to sensitize and challenge for a mouse model. Intranasal application of 5-BDBD, P2X4R antagonist, were performed 3 hr before each airway allergen challenge. The lung was evaluated for P2X4R by real-time PCR and immunofluorescence. Th1/Th2 cytokines in bronchoalveolar lavage fluid were measured by ELISA. T-bet, Gata-3, and p-p38 MAPK were measured by Western blot or real-time PCR. Results: P2X4R was overexpressed in the lung after allergen challenge compared with the control group. Blockage of P2X4R decreased inflammation in the lung, IL-4 expression was reduced as well as IL-5; IFN-γ expression was elevated in BALF in ovalbumin-sensitized mice. Moreover, blockage of P2X4R inhibited ovalbumin-induced increased Gata-3 level and decreased T-bet level. Conclusion: These findings suggest that 5-BDBD ameliorates an ovalbumin-induced asthmatic attack by the downregulation of cytokines related to the Th2 cell

    Large Eddy Simulation of Premixed Stratified Swirling Flame Using the Finite Rate Chemistry Approach

    No full text
    Large eddy simulations of a stratified swirling flow of a Cambridge swirl burner for both nonreacting and reacting cases are conducted using a finite rate chemistry approach represented by a partially stirred reactor model. The large eddy simulation predictions are compared with experimental measurements for velocity, temperature, and concentrations of major species. The agreement is found in overall trend of velocity prediction, but temperature and concentration of major species show slight discrepancies in the central region. Two reduced chemical mechanisms are examined in the present paper with the objective of assessing their capabilities in predicting swirling flame characteristics, and the distinct difference using two mechanisms is found in CO distribution profiles, which is considered the consequence of different kinetics of CO-CO2 equilibrium. Flow structures are qualitatively and quantitatively analyzed with numerical results. Large-scale vortex structures and precession motions are observed in both nonreacting and reacting cases. Frequency of vortex shedding is identified from the point data of instantaneous velocity in the discharging stream-induced shear layer. On this basis, the intensity and frequency of precession motion are shown to be enhanced in the presence of combustion. Large-scale wrinkling of the flame surface is resolved and characterized in the flame zone, and the effect of mixture stratification is then further discussed

    Modeling of Spray Combustion with a Steady Laminar Flamelet Model in an Aeroengine Combustion Chamber Based on OpenFOAM

    No full text
    The development of high-performance aeroengine combustion chambers strongly depends on the accuracy and reliability of efficient numerical models. In the present work, a reacting solver with a steady laminar flamelet model and spray model has been developed in OpenFOAM and the solver details are presented. The solver is firstly validated by Sandia/ETH-Zurich flames. Furthermore, it is used to simulate nonpremixed kerosene/air spray combustion in an aeroengine combustion chamber with the RANS method. A comparison with available experimental data shows good agreement and validates the capability of the new developed solver in OpenFOAM

    Combined Immunoinformatics to Design and Evaluate a Multi-Epitope Vaccine Candidate against <i>Streptococcus suis</i> Infection

    No full text
    Streptococcus suis (S. suis) is a zoonotic pathogen with multiple serotypes, and thus, multivalent vaccines generating cross-protection against S. suis infections are urgently needed to improve animal welfare and reduce antibiotic abuse. In this study, we established a systematic and comprehensive epitope prediction pipeline based on immunoinformatics. Ten candidate epitopes were ultimately selected for building the multi-epitope vaccine (MVSS) against S. suis infections. The ten epitopes of MVSS were all derived from highly conserved, immunogenic, and virulence-associated surface proteins in S. suis. In silico analyses revealed that MVSS was structurally stable and affixed with immune receptors, indicating that it would likely trigger strong immunological reactions in the host. Furthermore, mice models demonstrated that MVSS elicited high titer antibodies and diminished damages in S. suis serotype 2 and Chz infection, significantly reduced sequelae, induced cytokine transcription, and decreased organ bacterial burdens after triple vaccination. Meanwhile, anti-rMVSS serum inhibited five important S. suis serotypes in vitro, exerted beneficial protective effects against S. suis infections and significantly reduced histopathological damage in mice. Given the above, it is possible to develop MVSS as a universal subunit vaccine against multiple serotypes of S. suis infections

    Microscopic View of Defect Evolution in Thermal Treated AlGaInAs Quantum Well Revealed by Spatially Resolved Cathodoluminescence

    No full text
    An aluminum gallium indium arsenic (AlGaInAs) material system is indispensable as the active layer of diode lasers emitting at 1310 or 1550 nm, which are used in optical fiber communications. However, the course of the high-temperature instability of a quantum well structure, which is closely related to the diffusion of indium atoms, is still not clear due to the system&rsquo;s complexity. The diffusion process of indium atoms was simulated by thermal treatment, and the changes in the optical and structural properties of an AlGaInAs quantum well are investigated in this paper. Compressive strained Al0.07Ga0.22In0.71As quantum wells were treated at 170 &deg;C with different heat durations. A significant decrement of photoluminescence decay time was observed on the quantum well of a sample that was annealed after 4 h. The microscopic cathodoluminescent (CL) spectra of these quantum wells were measured by scanning electron microscope-cathodoluminescence (SEM-CL). The thermal treatment effect on quantum wells was characterized via CL emission peak wavelength and energy density distribution, which were obtained by spatially resolved cathodoluminescence. The defect area was clearly observed in the Al0.07Ga0.22In0.71As quantum wells layer after thermal treatment. CL emissions from the defect core have higher emission energy than those from the defect-free regions. The defect core distribution, which was associated with indium segregation gradient distribution, showed asymmetric character

    Effect of Substrate Misorientation on the Structural and Optical Characteristics of In-Rich InGaAs/GaAsP Quantum Wells

    No full text
    InGaAs quantum well (QW) lasers have attracted significant attention owing to their considerable potential for applications in optical communications; however, the relationship between the misorientation of the substrates used to grow InGaAs QWs and the structural and optical properties of QWs is still ambiguous. In this study, In-rich InGaAs/GaAsP single QWs were grown in the same run via metal organic chemical vapor deposition on GaAs (001) substrates misoriented by 0°, 2°, and 15° toward (111). The effects of substrate misorientation on the crystal quality and structural properties of InGaAs/GaAsP were investigated by X-ray diffraction and Raman spectroscopy. The 0° substrate exhibited the least lattice relaxation, and with increasing misorientation, the degree of lattice relaxation increased. The optical properties of the InGaAs/GaAsP QWs were investigated using temperature-dependent photoluminescence. An abnormal S-shaped variation of the peak energy and inverse evolution of the spectral bandwidth were observed at low temperatures for the 2° substrate, caused by the localization potentials due to the In-rich clusters. Surface morphology observations revealed that the growth mode varied with different miscuts. Based on the experimental results obtained in this study, a mechanism elucidating the effect of substrate miscuts on the structural and optical properties of QWs was proposed and verified

    Data on long noncoding RNA upregulated in hypothermia treated cardiomyocytes protects against myocardial infarction through improving mitochondrial function

    No full text
    This article elaborates on cardioprotective action of hypothermia related long noncoding RNA against myocardial infarction through improving mitochondrial function, which preset by J Zhang. Herein, we provide the materials and methods used in that study. And provided the detail of dysregulation of lncRNAs under the treatment of hypothermia. Furthermore, we found that lnc-UIHTC (lncRNA upregulated in hypothermia treated cardiomyocyte, NONHSAT094064) attenuated cardiomyocytes apoptosis in vitro
    corecore