1 research outputs found
Characterization of Middle-Temperature Gasification Coal Tar. Part 3: Molecular Composition of Acidic Compounds
Coal tar has been considered as a potential energy alternative
because of dwindling supplies of petroleum. To determine if the coal
tar could be refined and upgraded to produce clean transportation
fuels, detailed investigation of its composition is necessary, particularly
for identifying the acidic components that account for about one-quarter
of the weight of the coal tar. A middle-temperature coal tar (MTCT)
and its fractions were characterized by gas chromatography–mass
spectrometry (GC–MS) and negative-ion electrospray ionization
(ESI) Fourier transform ion cyclotron resonance mass spectrometry
(FT-ICR MS) with different ion transmission modes for high- and low-mass
ions. Analytical results of narrow distillation fractions from FT-ICR
MS agreed reasonably well with those from GC–MS, although each
technique has its own advantages and disadvantages. In this work,
FT-ICR MS was demonstrated to be capable of characterizing small molecules
of <100 Da using appropriate operation conditions, thus yielding
mass distributions to compare to GC–MS results. A continuous
distribution in double bond equivalent (DBE) and carbon number was
observed with the distillates of increasing boiling point, while the
composition of the distillation residue was much more complex than
that of distillates. Acidic compounds containing 1–7 oxygen
atoms were observed in the MTCT by FT-ICR MS, with O<sub>1</sub> and
O<sub>2</sub> classes being dominant. Various phenolic compounds with
1–4 aromatic rings were identified on the basis of literature
references, including some molecules having structures resembling
known biomarkers in petroleum and coal