6 research outputs found

    A Real-Time Digital Self Interference Cancellation Method for In-Band Full-Duplex Underwater Acoustic Communication Based on Improved VSS-LMS Algorithm

    No full text
    Theoretically, the spectral efficiency of in-band full-duplex underwater acoustic communications (IBFD-UWAC) is twice that of a half-duplex one. However, the actual achievable spectral efficiency of IBFD-UWAC is determined by the performance of the self-interference cancellation (SIC). In addition, the hostile underwater environment poses a challenge to the tracking performance of the SIC due to its complexity and variability. In this paper, we propose a digital SIC method based on the improved variable step-size least mean square (IVSS-LMS) algorithm where we modify the step-size adjustment criterion in the classical LMS filter and establishes a nonlinear relationship with the Sigmoid function to control the step-size using the instantaneous state error, thus improving the robustness and tracking performance of IVSS-LMS. Hardware-in-loop simulation (HLS) based on Simulink® platform verifies the real-time implementability and effectiveness of the proposed IVSS-LMS algorithm. Furthermore, the sea trial results show that the digital SIC method based on the proposed algorithm can be implemented in real-time and the convergence speed, and steady-state performance are significantly improved

    A Real-Time Digital Self Interference Cancellation Method for In-Band Full-Duplex Underwater Acoustic Communication Based on Improved VSS-LMS Algorithm

    No full text
    Theoretically, the spectral efficiency of in-band full-duplex underwater acoustic communications (IBFD-UWAC) is twice that of a half-duplex one. However, the actual achievable spectral efficiency of IBFD-UWAC is determined by the performance of the self-interference cancellation (SIC). In addition, the hostile underwater environment poses a challenge to the tracking performance of the SIC due to its complexity and variability. In this paper, we propose a digital SIC method based on the improved variable step-size least mean square (IVSS-LMS) algorithm where we modify the step-size adjustment criterion in the classical LMS filter and establishes a nonlinear relationship with the Sigmoid function to control the step-size using the instantaneous state error, thus improving the robustness and tracking performance of IVSS-LMS. Hardware-in-loop simulation (HLS) based on Simulink® platform verifies the real-time implementability and effectiveness of the proposed IVSS-LMS algorithm. Furthermore, the sea trial results show that the digital SIC method based on the proposed algorithm can be implemented in real-time and the convergence speed, and steady-state performance are significantly improved

    Deep Learning-Based Cyclic Shift Keying Spread Spectrum Underwater Acoustic Communication

    No full text
    A deep learning-based cyclic shift keying spread spectrum (CSK-SS) underwater acoustic (UWA) communication system is proposed for improving the performance of the conventional system in low signal-to-noise ratio and multipath effects. The proposed deep learning-based system involves the long- and short-term memory (LSTM) architecture-based neural network model as the receiving module of the system. The neural network is fed with the communication signals passing through known channel impulse responses in the offline stage, and then directly used to demodulate the received signal in the online stage to reduce the influence of the above factors. Numerical simulation and actual data results suggest that the deep learning-based CSK-SS UWA communication system is more reliable communication than a conventional system. In particular, the collected experimental data show that after preprocessing, when the communication rate is less than 180 bps, a bit error rate of less than 10−3 can be obtained at a signal-to-noise ratio of −8 dB

    Optimized Doppler Estimation and Symbol Synchronization for Mobile M-ary Spread Spectrum Underwater Acoustic Communication

    No full text
    In mobile underwater acoustic (UWA) communications, the Doppler effect causes severe signal distortion, which leads to carrier frequency shift and compresses/broadens the signal length. This situation has a more severe impact on communication performance in the case of low signal-to-noise ratio and variable-speed movement. This paper proposes a non-data-aided Doppler estimation method for M-ary spread spectrum UWA communication systems in mobile scenarios. The receiver uses the spread spectrum codes dedicated to transmitting signals with different frequency offsets as local reference signals. Correlation operations are performed symbol by symbol with the received signal. The decoding and Doppler estimation of the present symbol are achieved by searching the correlation maximum in the code domain and frequency domain. The length of the current symbol is corrected for the next symbol synchronization using the estimated Doppler coefficient. To optimize the process of Doppler estimation and symbol synchronization, a heuristic search method is used. By adjusting the Doppler factor search step size, setting the threshold value, and using the Doppler factor estimation of the previous symbol, the search range can be significantly reduced and the computational complexity decreased. The Fisher-Yates shuffle algorithm is used to traverse the search range to ensure reliability of the results. Simulation results show that enlarging the frequency-domain search step size in some degree does not affect the decoding accuracy. On 15 May 2021, a shallow-water mobile UWA spread spectrum communication experiment was conducted in Weihai, China. The horizontal distance between the transmitter and the receiver is 3.7–4.0 km, and the communication rate is 41.96 bits per second. The transmitting ship moves at a speed of 0–3 m/s, and the bit error rate (BER) is lower than 1e−3, which is better than that of the sliding correlation despreading method with average Doppler compensation

    Does Migrating with Children Influence Migrantss Occupation Choice and Income?

    No full text
    This paper studies the impact of migrant children on their parents’ occupation choice and wage income using a dataset from a household survey conducted in 2011. We find that the heads of migrant households with school-age children earn significantly less than those who left them at their place of hukou registration. This result holds when we control for personal characteristics, migration duration, origin location, and family structure. Households migrating with school-age children have a higher probability of doing so within the prefecture/province of their hukou registration and are less likely to target coastal regions. After controlling for migration scope and destination location, the presence of children does not influence wages of migrant household heads. We also find that the presence of children below the age of six has no impact on the income of migrant household heads. Our results suggest that the hukou system still impedes labor mobility.ADB_Does_migrating_with_children_influence_migrants_occupation_choice.pdf: 113 downloads, before Oct. 1, 2020
    corecore