179 research outputs found
Interactive Effects of Methionine and Lead Intake on Cognitive Function among Chinese Adults.
The association between methionine intake and cognitive function is inconclusive. We aimed to assess the association between methionine intake and cognitive function in Chinese adults and to explore the interaction between methionine and lead intake. Data from 4852 adults aged ≥55 years from the China Health and Nutrition Survey were used. Cognitive function was measured in 1997, 2000, 2004, and 2006. A 3-day, 24-hour recall was used to assess methionine and lead intake from different protein sources. Multivariable mixed linear regression was used in the analyses. Total methionine intake was positively correlated with cognition. There was a significant interaction between animal methionine and lead intakes. In subgroup analyses, across the quartiles of animal methionine intake, the regression coefficients (95% CI) for global cognition were 0.00, 0.57 (0.17 to 0.98), 1.18 (0.73 to 1.62), and 1.80 (1.31 to 2.29), respectively, while they were 0.00, -0.73 (-1.12 to -0.34), -0.83 (-1.26 to -0.41), and -1.72 (-2.22 to -1.22) across the quartiles of plant methionine intake, respectivelyThe association between animal methionine intake and cognition was stronger among adults with a low lead intake. In conclusion, animal methionine and plant methionine intake were positively and inversely associated with cognition, respectively. Lead intake modified the association between animal methionine intake and cognition.This study was supported in part by research grants from the Natural Scientific Foundation in Qinghai Province (2019-ZJ-932Q), and the National Key Research and Development Program of China (grant numbers: 2017YFC0907200 and 2017YFC0907201)
Ubiquitous short-range order in multi-principal element alloys
Recent research in multi-principal element alloys (MPEAs) has increasingly
focused on the exploration and exploitation of short-range order (SRO) to
enhance material performance. However, the understanding of SRO formation and
the precise tuning of it within MPEAs remains poorly understood, limiting the
comprehension of its impact on material properties and impeding the advancement
of SRO engineering. Here, leveraging advanced additive manufacturing techniques
that produce samples with a wide range of cooling rates (up to 10^7 K/s) and an
improved quantitative electron microscopy method, we characterize SRO in three
CoCrNi-based MPEAs to unravel the role of processing route and thermal history
on SRO. Surprisingly, irrespective of the processing and thermal treatment
applied, all samples exhibit similar levels of SRO, suggesting that prevalent
SRO may form during the solidification process. Atomistic simulations of
solidification verify that local chemical ordering arises in the liquid-solid
interface (solidification front) even under the extreme cooling rate of 10^11
K/s. This phenomenon stems from the swift atomic diffusion in the supercooled
liquid, which matches or even surpasses the rate of solidification. Therefore,
SRO is an inherent characteristic of most MPEAs, insensitive to variations in
cooling rates and annealing treatments typically available in experiments.
Integrating thermal treatment with other strategies, such as mechanical
deformation and irradiation, might be more effective approaches for harnessing
SRO to achieve controlled material properties.Comment: 27 pages, 5 figure
Screening of drug targets for tuberculosis on the basis of transcription factor regulatory network and mRNA sequencing technology
BackgroundTuberculosis is a worldwide epidemic disease, posing a serious threat to human health. To find effective drug action targets for Mycobacterium tuberculosis, differentially expressed genes in tuberculosis patients and healthy people were screened by mRNA sequencing in this study. A total of 556 differentially expressed genes in tuberculosis patients and healthy people were screened out by mRNA sequencing technology. 26 transcription factors and 66 corresponding target genes were screened out in the AnimalTFDB 3.0 database, and a transcription factor regulatory network was constructed.ResultsThree key transcription factors (TP53, KLF5 and GATA2) and one key gene (AKT1) were screened as new potential drug targets and diagnostic targets for tuberculosis by MCODE cluster analysis, and the key genes and key transcription factors were verified by RT-PCR. Finally, we constructed the and a key factor and KEGG signaling pathway regulatory network to clarify the possible molecular pathogenesis of tuberculosis.ConclusionThis study suggested M. tuberculosis may activate the AKT1 gene expression by regulating transcription factors TP53, KLF5, and GATA2, thus activating the B cell receptor signaling pathway to induce the infection and invasion of M. tuberculosis. AKT1, TP53, KLF5, and GATA2 can be used as new potential drug targets for tuberculosis
Ubiquitous short-range order in multi-principal element alloys.
Recent research in multi-principal element alloys (MPEAs) has increasingly focused on the role of short-range order (SRO) on material performance. However, the mechanisms of SRO formation and its precise control remain elusive, limiting the progress of SRO engineering. Here, leveraging advanced additive manufacturing techniques that produce samples with a wide range of cooling rates (up to 107 K s-1) and an enhanced semi-quantitative electron microscopy method, we characterize SRO in three CoCrNi-based face-centered-cubic (FCC) MPEAs. Surprisingly, irrespective of the processing and thermal treatment history, all samples exhibit similar levels of SRO. Atomistic simulations reveal that during solidification, prevalent local chemical order arises in the liquid-solid interface (solidification front) even under the extreme cooling rate of 1011 K s-1. This phenomenon stems from the swift atomic diffusion in the supercooled liquid, which matches or even surpasses the rate of solidification. Therefore, SRO is an inherent characteristic of most FCC MPEAs, insensitive to variations in cooling rates and even annealing treatments typically available in experiments
Comprehensive analysis of grazing intensity impacts alpine grasslands across the Qinghai-Tibetan Plateau: A meta-analysis
Livestock grazing is a dominant practice in alpine grasslands and plays a crucial role in the ecosystem service of the Qinghai-Tibetan Plateau. The effects of grazing on alpine grasslands highly depends on grazing intensity. Up to now, we still lack comprehensive understanding of the general responses of alpine grasslands to different grazing intensities over broad geographic scales across the Qinghai-Tibetan Plateau. Here, we conducted a meta-analysis to explore the responses of plant characteristics and soil properties to grazing intensity in alpine grasslands of the Qinghai-Tibetan Plateau based on 52 peer-reviewed literatures. The results showed that grazing did not change the belowground biomass, while significantly increased the ratio of root to shoot (P< 0.05). Light grazing exhibited no significant effects on the plant richness, Shannon-Wiener diversity, soil water content, soil bulk density, nutrients, microbial biomass carbon, and microbial biomass nitrogen (P > 0.05). Moderate grazing significantly increased the plant richness and Shannon-Wiener diversity, while significantly decreased the soil organic carbon and total nitrogen (P< 0.05). Heavy grazing significantly decreased the plant richness, Shannon-Wiener diversity, water content, soil organic carbon, total nitrogen, microbial biomass carbon, and microbial biomass nitrogen, and significantly increased the soil bulk density (P< 0.05). These findings suggest that overgrazing is closely associated with grassland degradation, and moderate grazing is a sustainable practice to provide animal production and simultaneously maintain ecological functions for alpine grasslands on the Qinghai-Tibetan Plateau
Molecular and biochemical investigations of the anti-fatigue effects of tea polyphenols and fruit extracts of Lycium ruthenicum Murr. on mice with exercise-induced fatigue
Background: The molecular mechanisms regulating the therapeutic effects of plant-based ingredients on the exercise-induced fatigue (EIF) remain unclear. The therapeutic effects of both tea polyphenols (TP) and fruit extracts of Lycium ruthenicum (LR) on mouse model of EIF were investigated.Methods: The variations in the fatigue-related biochemical factors, i.e., lactate dehydrogenase (LDH), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-2 (IL-2), and interleukin-6 (IL-6), in mouse models of EIF treated with TP and LR were determined. The microRNAs involved in the therapeutic effects of TP and LR on the treatment of mice with EIF were identified using the next-generation sequencing technology.Results: Our results revealed that both TP and LR showed evident anti-inflammatory effect and reduced oxidative stress. In comparison with the control groups, the contents of LDH, TNF-α, IL-6, IL-1β, and IL-2 were significantly decreased and the contents of SOD were significantly increased in the experimental groups treated with either TP or LR. A total of 23 microRNAs (21 upregulated and 2 downregulated) identified for the first time by the high-throughput RNA sequencing were involved in the molecular response to EIF in mice treated with TP and LR. The regulatory functions of these microRNAs in the pathogenesis of EIF in mice were further explored based on Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses with a total of over 20,000–30,000 target genes annotated and 44 metabolic pathways enriched in the experimental groups based on GO and KEGG databases, respectively.Conclusion: Our study revealed the therapeutic effects of TP and LR and identified the microRNAs involved in the molecular mechanisms regulating the EIF in mice, providing strong experimental evidence to support further agricultural development of LR as well as the investigations and applications of TP and LR in the treatment of EIF in humans, including the professional athletes
The Association between Methionine Intake and Diabetes in Chinese Adults-Results from the China Health and Nutrition Survey
This study aimed to evaluate the association between methionine intake and diabetes prevalence in Chinese adults and explore whether the association was source-specific. Data from 12,849 adults aged ≥20 years old were used from the China Health and Nutrition Survey during 1997–2011. Diabetes was diagnosed as self-reported and/or when blood tests results met the diagnostic criteria. A 3-day, 24-h recall was used to assess different sources of methionine. Multivariable mixed linear regression was used to examine the associations. Across the quartiles of total methionine intake, the odds ratio (ORs, 95% CI) of diabetes were 1.00, 1.49 (1.21 to 1.82), 1.72 (1.37 to 2.15), and 2.53 (1.97 to 3.23). In the subgroup analysis, similar trends were observed in both animal and plant methionine. There was a significant interaction between urbanization and diabetes. The positive association was only significant in those who lived in low or medium urbanization areas. The ORs (95% CI) were 1.00, 1.27 (0.85 to 1.88), 1.56 (1.01 to 2.39), and 1.79 (1.09 to 2.95) for medium urbanization, respectively. No interaction was identified when stratified by different methionine sources. In conclusion, methionine intake was positively associated with diabetes independent of food source, and it was modified by urbanization levels.This study was funded by the Natural Scientific Foundation in Qinghai Province (grant number: 2019-ZJ-932Q), and the National Key Research and Development Program of China (grant numbers: 2017YFC0907200 and 2017YFC0907201)
Jia-Wei-Kai-Xin-San treatment alleviated mild cognitive impairment through anti-inflammatory and antiapoptotic mechanisms in SAMP8 mice
Background. Alleviating mild cognitive impairment (MCI) is crucial to delay the progression of Alzheimer’s disease (AD). Jia-Wei-Kai-Xin-San (JWKXS) is applied for treating AD with MCI. However, the mechanism of JWKXS in the treatment of MCI is unclear. Thus, this study aimed to investigate the effect and mechanism of JWKXS in SAMP8 mice models of MCI. Methods. MCI models were established to examine learning and memory ability and explore the pathomechanisms in brain of SAMP8 mice at 4, 6, and 8 months. The mice were treated for 8 weeks and the effects of JWKXS on MCI were characterized through Morris water maze and HE/Nissl’s/immunohistochemical staining. Its mechanism was predicted by the combination of UPLC-Q-TOF/MS and system pharmacology analysis, further verified with SAMP8 mice, BV2 microglial cells, and PC12 cells. Results. It was found that 4-month-old SAMP8 mice exhibited MCI. Two months of JWKXS treatment improved the learning and memory ability, alleviated the hippocampal tissue and neuron damage. Through network pharmacology, four key signaling pathways were found to be involved in treatment of MCI by JWKXS, including TLR4/NF-κB pathway, NLRP3 inflammasome activation, and intrinsic and extrinsic apoptosis. In vitro and in vivo experiments demonstrated that JWKXS attenuated neuroinflammation by inhibiting microglia activation, suppressing TLR4/NF-κB and NLRP3 inflammasome pathways, and blocking the extrinsic and intrinsic apoptotic pathways leading to neuronal apoptosis suppression in the hippocampus. Conclusion. JWKXS treatment improved the learning and memory ability and conferred neuroprotective effects against MCI by inducing anti-inflammation and antiapoptosis. Limitations. The small sample size and short duration of the intervention limit in-depth investigation of the mechanisms. Future Prospects. This provides a direction for further clarification of the anti-AD mechanism, and provides certain data support for the formulation to move toward clinical practice
Addition of cellulose degrading bacterial agents promoting keystone fungal-mediated cellulose degradation during aerobic composting: Construction the complex co-degradation system
To excavate a complex co-degradation system for decomposing cellulose more efficiently, cellulose-degrading bacteria, including Bacillus subtilis WF-8, Bacillus licheniformis WF-11, Bacillus Cereus WS-1 and Streptomyces Nogalater WF-10 were added during maize straw and cattle manure aerobic composting. Bacillus and Streptomyces successfully colonized, which improve cellulose degrading ability. Continuous colonization of cellulose-degrading bacteria can promote the fungi to produce more precursors for humus and promote the negative correlation with Ascomycota. In the current study, the addition of cellulose-degrading bacteria has resulted in the rapid development of Mycothermus and Remersonia in the phylum Ascomycota as keystone fungal genera which constitute the foundation of the co-degradation system. Network analysis reveals the complex co-degradation system of efficient cellulose bacteria and mature fungi to treat cellulose in the process of straw aerobic composting mainly related to the influence of total carbon (TC) /total nitrogen (TN) and humic acid (HA)/fulvic acid (FA). This research offers a complex co-degradation system more efficiently to decompose cellulose aiming to maintain the long-term sustainability of agriculture
Complete Chloroplast Genome Sequence of a Major Invasive Species, Crofton Weed (Ageratina adenophora)
Crofton weed (Ageratina adenophora) is one of the most hazardous invasive plant species, which causes serious economic losses and environmental damages worldwide. However, the sequence resource and genome information of A. adenophora are rather limited, making phylogenetic identification and evolutionary studies very difficult. Here, we report the complete sequence of the A. adenophora chloroplast (cp) genome based on Illumina sequencing.The A. adenophora cp genome is 150, 689 bp in length including a small single-copy (SSC) region of 18, 358 bp and a large single-copy (LSC) region of 84, 815 bp separated by a pair of inverted repeats (IRs) of 23, 755 bp. The genome contains 130 unique genes and 18 duplicated in the IR regions, with the gene content and organization similar to other Asteraceae cp genomes. Comparative analysis identified five DNA regions (ndhD-ccsA, psbI-trnS, ndhF-ycf1, ndhI-ndhG and atpA-trnR) containing parsimony-informative characters higher than 2%, which may be potential informative markers for barcoding and phylogenetic analysis. Repeat structure, codon usage and contraction of the IR were also investigated to reveal the pattern of evolution. Phylogenetic analysis demonstrated a sister relationship between A. adenophora and Guizotia abyssinica and supported a monophyly of the Asterales.We have assembled and analyzed the chloroplast genome of A. adenophora in this study, which was the first sequenced plastome in the Eupatorieae tribe. The complete chloroplast genome information is useful for plant phylogenetic and evolutionary studies within this invasive species and also within the Asteraceae family
- …