19 research outputs found
Nonlinear aeroelastic behavior of an airfoil with free-play in transonic flow
An investigation has been made into the nonlinear aeroelastic behavior of an airfoil system with free-play nonlinear stiffness in transonic flow. Computational Fluid Dynamics (CFD) and Reduced Order Model (ROM) based on Euler and Navier-Stokes equations are implemented to calculate unsteady aerodynamic forces. Results show that the nonlinear aeroelastic system experiences various bifurcations with increasing Mach number. Regular subcritical bifurcations are observed in low Mach number region. Subsequently, complex Limit Cycle Oscillations (LCOs) and even non-periodic motions appear at specific airspeed regions. When the Mach number is increased above the freeze Mach number, regular subcritical bifurcations occur again. Comparisons with inviscid solutions are used to identify and elaborate the effect of viscosity with the help of aeroelastic analysis techniques, including root locus, Single Degree of Freedom (SDOF) flutter and aerodynamic influence coefficient (AIC). For low Mach numbers in the transonic regime, the viscosity has little effect on the linear flutter characteristic because of limited influence on AIC, but a remarkable impact on the nonlinear dynamic behavior due to the sensitivity of the nonlinear structure. As the Mach number increases, the viscosity becomes significantly important due to the existence of shock-boundary layer interaction. It affects the unstable mechanism of linear flutter, impacts the aerodynamic center and hence the snap-through phenomenon, influences the AIC and consequently the nonlinear aeroelastic response. When the Mach number is increased further, the shock wave dominates the air flow and the viscosity is of minor importance
Nonlinear magnetic-coupled flutter-based aeroelastic energy harvester: modeling, simulation and experimental verification
Aeroelastic energy harvesting can be used to power wireless sensors embedded into bridges, ducts, high-altitude buildings, etc. One challenging issue is that the wind speed in some application environments is low, which leads to an inefficiency of aeroelastic energy harvesters. This paper presents a novel nonlinear magnetic-coupled flutter-based aeroelastic energy harvester (FAEH) to enhance energy harvesting at low wind speeds. The presented harvester mainly consists of a piezoelectric beam, a two-dimensional airfoil, two tip magnets and two external magnets. The function of magnets is to reduce the cut-in wind speed of the FAEH and enhance energy harvesting performance at low wind speeds. A theoretical model is deduced based on Hamilton's principle, theory of aeroelasticity, Kirchhoff's laws and experimental measurements, etc. A good agreement is found between numerical simulation and experimental results, which verifies the accuracy of the theoretical model. Stability analysis is provided to determine the characteristics of the presented harvester. More importantly, it is numerically and experimentally verified that the presented harvester has a much lower cut-in wind speed (about 1.0 m s−1) and has a better energy harvesting performance at a low wind speed range from 1.0 m s−1 to 2.9 m s−1, when compared with traditional FAEHs
Nonlinear Aero-elastic Analysis of Control Fin with Free-play Nonlinearity
The nonlinear flutter problem of aero-elastic system with free-play nonlinearity has become one of the hottest and most challenging topics in the engineering field of aircraft aero-elasticity. The nonlinear aero-elastic behaviors of the control fin with free-play nonlinearity are analyzed. The reduced-order aerodynamic model in time-domain is obtained by using the minimum state approximation method, and then the nonlinear aero-elastic equations of the control fin can be obtained based on the Lagrange equation. Using the numerical method, the aero-elastic system behaviors with free-play nonlinearity in either pitch or plunge, or both of them are studied, including limit cycle oscillations (LCOs) and nonlinear dynamic responses. The numerical results are compared with those of the equivalent linearization method. The results show that the stiffness of pitch and plunge spring is of significant influence on the flutter boundary of the system. And when the free-plays are both in pitch and plunge, there exist complex dynamic phenomena including the multi-periodic LCOs and chaotic motions
The Development of a Flight Test Platform to Study the Body Freedom Flutter of BWB Flying Wings
A flight test platform is designed to conduct an experimental study on the body freedom flutter of a BWB flying wing, and a flight test is performed by using the proposed platform. A finite element model of structural dynamics is built, and unsteady aerodynamics and aeroelastic characteristics of the flying wing are analyzed by the doublet lattice method and g-method, respectively. Based on the foregoing analyses, a low-cost and low-risk flying-wing test platform is designed and manufactured. Then, the ground vibration test is implemented, and according to its results, the structural dynamics model is updated. The flight test campaign shows that the body freedom flutter occurs at low flight speed, which is consistent with the updated analytical result. Finally, an active flutter suppression controller is designed using a genetic algorithm for the developed flying wing for future tests, considering the gains and sensor location as design parameters. The open- and closed-loop analyses in time- and frequency-domain analyses demonstrate that the designed controller can improve the instability boundary of the closed-loop system effectively
Full-Span Flying Wing Wind Tunnel Test: A Body Freedom Flutter Study
Aiming at the experimental test of the body freedom flutter for modern high aspect ratio flexible flying wing, this paper conducts a body freedom flutter wind tunnel test on a full-span flying wing flutter model. The research content is summarized as follows: (1) The full-span finite element model and aeroelastic model of an unmanned aerial vehicle for body freedom flutter wind tunnel test are established, and the structural dynamics and flutter characteristics of this vehicle are obtained through theoretical analysis. (2) Based on the preliminary theoretical analysis results, the design and manufacturing of this vehicle are completed, and the structural dynamic characteristics of the vehicle are identified through ground vibration test. Finally, the theoretical analysis model is updated and the corresponding flutter characteristics are obtained. (3) A novel quasi-free flying suspension system capable of releasing pitch, plunge and yaw degrees of freedom is designed and implemented in the wind tunnel flutter test. The influence of the nose mass balance on the flutter results is explored. The study shows that: (1) The test vehicle can exhibit body freedom flutter at low airspeeds, and the obtained flutter speed and damping characteristics are favorable for conducting the body freedom flutter wind tunnel test. (2) The designed suspension system can effectively release the degrees of freedom of pitch, plunge, and yaw. The flutter speed measured in the wind tunnel test is 9.72 m/s, and the flutter frequency is 2.18 Hz, which agree well with the theoretical results (with flutter speed of 9.49 m/s and flutter frequency of 2.03 Hz). (3) With the increasing of the mass balance at the nose, critical speed of body freedom flutter rises up and the flutter frequency gradually decreases, which also agree well with corresponding theoretical results