36 research outputs found

    Effects of bolt slippage on the wind induced responses of transmission tower line system

    Get PDF
    The wind induced responses of transmission tower line system are studied by finite element method. Firstly, a slip model considering eccentricity and bolt joint slippage in diagonal bracings, tower legs and tower head is built by ANSYS. The slip model has a more accurate result compared with conventional models. Secondly, the finite element models of tower line systems are established and the wind speed time histories are simulated using MATLAB. Finally, the wind induced responses of different tower line systems are studied. The results of a single tower and the tower line systems are compared to study the effects of tower-line coupling effects and bolt slippage on wind induced responses of transmission tower line systems

    The fermentation optimization for alkaline protease production by Bacillus subtilis BS-QR-052

    Get PDF
    IntroductionProteases exhibit a wide range of applications, and among them, alkaline proteases have become a prominent area of research due to their stability in highly alkaline environments. To optimize the production yield and activity of alkaline proteases, researchers are continuously exploring different fermentation conditions and culture medium components.MethodsIn this paper, the fermentation conditions of the alkaline protease (EC 3.4.21.14) production by Bacillus subtilis BS-QR-052 were optimized, and the effect of different nutrition and fermentation conditions was investigated. Based on the single-variable experiments, the Plackett–Burman design was used to explore the significant factors, and then the optimized fermentation conditions, as well as the interaction between these factors, were evaluated by response surface methodology through the Box–Behnken design.Results and discussionThe results showed that 1.03% corn syrup powder, 0.05% MgSO4, 8.02% inoculation volume, 1:1.22 vvm airflow rate, as well as 0.5% corn starch, 0.05% MnSO4, 180 rpm agitation speed, 36°C fermentation temperature, 8.0 initial pH and 96 h incubation time were predicted to be the optimal fermentation conditions. The alkaline protease enzyme activity was estimated to be approximately 1787.91 U/mL, whereas subsequent experimental validation confirmed it reached 1780.03 U/mL, while that of 500 L scale-up fermentation reached 1798.33 U/mL. This study optimized the fermentation conditions for alkaline protease production by B. subtilis through systematic experimental design and data analysis, and the activity of the alkaline protease increased to 300.72% of its original level. The established model for predicting alkaline protease activity was validated, achieving significantly higher levels of enzymatic activity. The findings provide valuable references for further enhancing the yield and activity of alkaline protease, thereby holding substantial practical significance and economic benefits for industrial applications

    Investigation of utilization of nanosuspension formulation to enhance exposure of 1,3-dicyclohexylurea in rats: Preparation for PK/PD study via subcutaneous route of nanosuspension drug delivery

    Get PDF
    1,3-Dicyclohexylurea (DCU), a potent soluble epoxide hydrolase (sEH) inhibitor has been reported to lower systemic blood pressure in spontaneously hypertensive rats. One limitation of continual administration of DCU for in vivo studies is the compound's poor oral bioavailability. This phenomenon is mainly attributed to its poor dissolution rate and low aqueous solubility. Previously, wet-milled DCU nanosuspension has been reported to enhance the bioavailability of DCU. However, the prosperities and limitations of wet-milled nanosuspension have not been fully evaluated. Furthermore, the oral pharmacokinetics of DCU in rodent are such that the use of DCU to understand PK/PD relationships of sEH inhibitors in preclinical efficacy model is less than ideal. In this study, the limitation of orally delivered DCU nanosuspension was assessed by a surface area sensitive absorption model and pharmacokinetic modeling. It was found that dosing DCU nanosuspension did not provide the desired plasma profile needed for PK/PD investigation. Based on the model and in vivo data, a subcutaneous route of delivery of nanosuspension of DCU was evaluated and demonstrated to be appropriate for future PK/PD studies

    Evaluation of the Treatment Process of Landfill Leachate Using the Toxicity Assessment Method

    No full text
    Landfill leachate is composed of a complex composition with strong biological toxicity. The combined treatment process of coagulation and sedimentation, anaerobics, electrolysis, and aerobics was set up to treat landfill leachate. This paper explores the effect of different operational parameters of coagulation and sedimentation tanks and electrolytic cells, while investigating the combined process for the removal efficiency of physicochemical indices after processing the landfill leachate. Meanwhile, a battery of toxicity tests with Vibrio fischeri, zebrafish larvae, and embryos were conducted to evaluate acute toxicity and calculated the toxicity reduction efficiency after each treatment process. The combined treatment process resulted in a 100% removal efficiency of Cu, Cd and Zn, and a 93.50% and an 87.44% removal efficiency of Ni and Cr, respectively. The overall removal efficiency of chemical oxygen demand (COD), ammonium nitrogen (NH4+-N), and total nitrogen (TN) were 93.57%, 97.46% and 73.60%, respectively. In addition, toxicity test results showed that the acute toxicity of landfill leachate had also been reduced significantly: toxicity units (TU) decreased from 84.75 to 12.00 for zebrafish larvae, from 82.64 to 10.55 for zebrafish embryos, and from 3.41 to 0.63 for Vibrio fischeri. The combined treatment process was proved to be an efficient treatment method to remove heavy metals, COD, NH4+-N, and acute bio-toxicity of landfill leachate

    Coplanar waveguide-fed ultra-wideband antenna with triple-band notched design

    No full text
    A novel coplanar waveguide-fed ultra-wideband antenna with triple band-notched function centred at 3.5, 5.5 and 7.5 GHz is proposed. It has small size of 26 × 26 mm^2. This antenna consists of an elliptical radiator and a square ground plane with an elliptical slot on one side of the substrate. Besides, two circles with a radius of 2 mm were dug from the edge of the outer ellipse to realise the bandwidth requirement. To avoid interference from Worldwide Interoperability for Microwave Access, a single open-ended elliptical arc-shaped slot was etched on the top side of the ground. Moreover, another elliptical arc-shaped slot notched at wireless local area network band was etched on the elliptical radiator and two systemically C-shaped slots working at 7.3–7.7 GHz was embedded on the structure. Measured voltage standing wave ratio shows the working frequency range was from 3.1 to 13.5 GHz except for notched bands of 3.35–3.8, 5.1–5.9 and 7.35–7.8 GHz

    A Multidimensional Elastic–Plastic Calculation Model of the Frame Structure with Magnetorheological Damper

    No full text
    To analyze the multidimensional elastic–plastic response of the frame structure with magnetorheological (MR) dampers under strong seismic excitations, the test of the MRD was performed, the location matrix of the MRD in the frame structure was derived, and the multidimensional elastic–plastic calculation models of the frame structure with and without an MRD were established based on the three-segment variable stiffness beam. Taking a five-story reinforced concrete (RC) frame structure as an example, the multidimensional elastic–plastic calculation models were developed by MATLAB software and the dynamic time history analyses were performed under strong seismic excitations. The results show that under the seismic wave, after the MRD is installed in the structure, the maximum horizontal displacements of the top-story node of the structure in X and Y directions is reduced by 51.87% and 39.59%, respectively, and the maximum horizontal accelerations are reduced by 36.67% and 47.86%. The maximum displacements and the story drift ratios of each story of the structure are significantly reduced, and the reduction in the maximum accelerations of each story is small relatively. In the frame structure without an MRD, plastic hinges appear at the ends of most columns, and the structure is characterized by a column hinge yield mechanism. The maximum residual displacement angles of the column end in X and Y directions which reach 1.628 × 10−3 rad and 2.101 × 10−3 rad, respectively. After setting the MRD, the number of plastic hinges in X and Y directions at the column end are both reduced by 37.5%, and the residual displacement angle at some column ends are reduced to 0. The results show that the complied calculation model programs of the frame structure can effectively simulate the multi-dimensional seismic response of the structure with and without MRD

    Experimental Study on Purification Effect of Biochemical Pool Model for Treatment of Pavement Runoff by Aquatic Plants

    No full text
    The road runoff after rainfall carries a lot of pollutants that could cause great harm to the water environment. A biochemical pool can be used as a treatment for the road runoff. In order to further improve the efficiency of road runoff treatment by biochemical pool and to evaluate the purification effect of the aquatic plants, two aquatic plants of Iris pseudacorus and Myriophyllum verticillatum were chosen in this research. The effect of different planting densities on the treatment of runoff pollutants and the planting mode by different aquatic plants were studied. The results show that both plants have the ability to remove the pollutants like chemical oxygen demand (COD), Zn, Cu, oil, and suspended solids (SS), and the ability is increased with the increase of planting density. The Iris pseudacorus is better than Myriophyllum verticillatum on the removal of Zn, while Myriophyllum verticillatum does better on the removal of Cu, oil, and SS. Combined planting mode can effectively improve the purification effect of COD and petroleum
    corecore