171 research outputs found
Disentangling Object Motion and Occlusion for Unsupervised Multi-frame Monocular Depth
Conventional self-supervised monocular depth prediction methods are based on
a static environment assumption, which leads to accuracy degradation in dynamic
scenes due to the mismatch and occlusion problems introduced by object motions.
Existing dynamic-object-focused methods only partially solved the mismatch
problem at the training loss level. In this paper, we accordingly propose a
novel multi-frame monocular depth prediction method to solve these problems at
both the prediction and supervision loss levels. Our method, called
DynamicDepth, is a new framework trained via a self-supervised cycle consistent
learning scheme. A Dynamic Object Motion Disentanglement (DOMD) module is
proposed to disentangle object motions to solve the mismatch problem. Moreover,
novel occlusion-aware Cost Volume and Re-projection Loss are designed to
alleviate the occlusion effects of object motions. Extensive analyses and
experiments on the Cityscapes and KITTI datasets show that our method
significantly outperforms the state-of-the-art monocular depth prediction
methods, especially in the areas of dynamic objects. Our code will be made
publicly available
Multi-Parametric MRI for Radiotherapy Simulation
Magnetic resonance imaging (MRI) has become an important imaging modality in the field of radiotherapy (RT) in the past decade, especially with the development of various novel MRI and image-guidance techniques. In this review article, we will describe recent developments and discuss the applications of multi-parametric MRI (mpMRI) in RT simulation. In this review, mpMRI refers to a general and loose definition which includes various multi-contrast MRI techniques. Specifically, we will focus on the implementation, challenges, and future directions of mpMRI techniques for RT simulation
- …