128 research outputs found

    Dalton Transactions

    Get PDF
    PAPER The formation of title complexes shows the effects of lanthanide metal size and amino ligand denticity on the lanthanide selenidostannates. Complexes 1a-2c exhibit semiconducting properties with band gaps between 2.08 and 2.48 eV

    Antioxidant effect of yeast on lipid oxidation in salami sausage

    Get PDF
    Salami is a kind of fermented meat product with rich nutrition and unique flavor. Because it is rich in fat, it is easy to oxidize to produce bad flavor. Compared with the way of adding artificial or natural antioxidants to reduce the degree of sausage oxidation, the antioxidant characteristics of developing the starter itself deserve more attention. In this study, firstly the antioxidant activities of 5 strains of yeast were measured in vitro, and then the mixture of yeast and Lactobacillus rhamnosus YL-1 was applied to fermented sausage model. The effect of the starter in the sausage model was investigated through physicochemical parameters, degree of fat oxidation, free fatty acid content, and though volatile flavor compound analysis, sensory evaluation and various indexes after storage were observed. Metagenomics was used to explore metabolic pathways, functional genes and key enzymes related to lipid oxidizing substances in sausage in yeast. The results showed that Wickerhamomyces anomalus Y12-3 and Y12-4 had strong tolerance to H2O2, and had higher SOD and CAT enzyme activities. The addition of yeast effectively reduced the material value of peroxidation value and active thiobarbiturate in salami. In flavor analysis, the content of flavor compounds associated with lipid oxidation, such as hexanal, heptanal, nonanal and (E)-2-decenal were significantly lower with the use of Debaryomyces hansenii Y4-1 and Y12-3. Meanwhile, the possible pathways of yeast metabolism of flavor substances related to lipid oxidation (mainly aldehydes) were discussed with the help of metagenomic techniques. According to the results of metagenomics, fatty acid degradation (ko00071) metabolic pathway was related to the degradation of aldehydes through aldehyde dehydrogenase, which was the potential key enzyme

    Exosomes Derived From Pericytes Improve Microcirculation and Protect Blood–Spinal Cord Barrier After Spinal Cord Injury in Mice

    Get PDF
    Spinal cord injury (SCI) often leads to severe and permanent paralysis and places a heavy burden on individuals, families, and society. Until now, the therapy of SCI is still a big challenge for the researchers. Transplantation of mesenchymal stem cells (MSCs) is a hot spot for the treatment of SCI, but many problems and risks have not been resolved. Some studies have reported that the therapeutic effect of MSCs on SCI is related to the paracrine secretion of cells. The exosomes secreted by MSCs have therapeutic potential for many diseases. There are abundant pericytes which possess the characteristics of stem cells in the neurovascular unit. Due to the close relationship between pericytes and endothelial cells, the exosomes of pericytes can be taken up by endothelial cells more easily. There are fewer studies about the therapeutic potential of the exosomes derived from pericytes on SCI now. In this study, exosomes of pericytes were transplanted into the mice with SCI to study the restoration of motor function and explore the underlying mechanism. We found that the exosomes derived from pericytes could reduce pathological changes, improve the motor function, the blood flow and oxygen deficiency after SCI. In addition, the exosomes could improve the endothelial ability to regulate blood flow, protect the blood-spinal cord barrier, reduce edema, decrease the expression of HIF-1α, Bax, Aquaporin-4, and MMP2, increase the expression of Claudin-5, bcl-2 and inhibit apoptosis. The experiments in vitro proved that exosomes derived from pericytes could protect the barrier of spinal cord microvascular endothelial cells under hypoxia condition, which was related to PTEN/AKT pathway. In summary, our study showed that exosomes of pericytes had therapeutic prospects for SCI
    corecore