41 research outputs found
The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice
<p>Abstract</p> <p>Background</p> <p>Cytoplasmic male sterility (CMS) has often been associated with abnormal mitochondrial open reading frames. The mitochondrial gene <it>orfH79 </it>is a candidate gene for causing the CMS trait in CMS-Honglian (CMS-HL) rice. However, whether the <it>orfH79 </it>expression can actually induce CMS in rice remains unclear.</p> <p>Results</p> <p>Western blot analysis revealed that the ORFH79 protein is mainly present in mitochondria of CMS-HL rice and is absent in the fertile line. To investigate the function of ORFH79 protein in mitochondria, this gene was fused to a mitochondrial transit peptide sequence and used to transform wild type rice, where its expression induced the gametophytic male sterile phenotype. In addition, excessive accumulation of reactive oxygen species (ROS) in the microspore, a reduced ATP/ADP ratio, decreased mitochondrial membrane potential and a lower respiration rate in the transgenic plants were found to be similar to those in CMS-HL rice. Moreover, retarded growth of primary and lateral roots accompanied by abnormal accumulation of ROS in the root tip was observed in both transgenic rice and CMS-HL rice (YTA).</p> <p>Conclusion</p> <p>These results suggest that the expression of <it>orfH79 </it>in mitochondria impairs mitochondrial function, which affects the development of both male gametophytes and the roots of CMS-HL rice.</p
A Wireless Electronic Nose System Using a Fe2O3 Gas Sensing Array and Least Squares Support Vector Regression
This paper describes the design and implementation of a wireless electronic nose (WEN) system which can online detect the combustible gases methane and hydrogen (CH4/H2) and estimate their concentrations, either singly or in mixtures. The system is composed of two wireless sensor nodes—a slave node and a master node. The former comprises a Fe2O3 gas sensing array for the combustible gas detection, a digital signal processor (DSP) system for real-time sampling and processing the sensor array data and a wireless transceiver unit (WTU) by which the detection results can be transmitted to the master node connected with a computer. A type of Fe2O3 gas sensor insensitive to humidity is developed for resistance to environmental influences. A threshold-based least square support vector regression (LS-SVR)estimator is implemented on a DSP for classification and concentration measurements. Experimental results confirm that LS-SVR produces higher accuracy compared with artificial neural networks (ANNs) and a faster convergence rate than the standard support vector regression (SVR). The designed WEN system effectively achieves gas mixture analysis in a real-time process
Dam foundation excavation techniques in China: A review
AbstractA protective layer (PL) is commonly reserved above foundation surface to protect the underlying rock mass during dam foundation excavation. In China, the PL of dam foundation is conventionally subdivided into two or three thin layers and excavated with the shallow-hole blasting method, even by pneumatic pick method in case of soft rock mass. The aforementioned layered excavation of the PL delays the construction of the whole project. After nearly 30-year practices, several safe and efficient methods for the PL excavation of dam foundation are gradually developed. They include shallow-hole bench blasting with cushion material (SBC) at the bottom of the hole, and horizontal smooth blasting (HSB). The PL is even cancelled on the condition that horizontal pre-split technique is employed during dam foundation excavation. This paper introduces the aforementioned two PL excavation methods (shallow-hole blasting and bench blasting) and horizontal pre-split technique of dam foundation without protective layer (HPP). The basic principles of blasting method, blasting geometry, charge structure, drill-and-blast parameters of typical projects are examined. Meanwhile, the merits and limitations of each method are compared. Engineering practices in China show that HSB is basically the optimal method for dam foundation PL excavation in terms of foundation damage control and rapid construction. Some new problems for dam foundation PL excavation arising, such as strong unloading and relaxation phenomenon that encountered in the gorge region of southwest China, are needed to be addressed; and the corresponding countermeasures are discussed as well
An evaluation of numerical approaches for S-wave component simulation in rock blasting
The shear wave (S-wave) component of the total blast vibration always plays an important role in damage to rock or adjacent structures. Numerical approach has been considered as an economical and effective tool in predicting blast vibration. However, S-wave has not yet attracted enough attention in previous numerical simulations. In this paper, three typical numerical models, i.e. the continuum-based elastic model, the continuum-based damage model, and the coupled smooth particle hydrodynamics (SPH)-finite element method (FEM) model, were first introduced and developed to simulate the blasting of a single cylindrical charge. Then, the numerical results from different models were evaluated based on a review on the generation mechanisms of S-wave during blasting. Finally, some suggestions on the selection of numerical approaches for simulating generation of the blast-induced S-wave were put forward. Results indicate that different numerical models produce different results of S-wave. The coupled numerical model was the best, for its outstanding capacity in producing S-wave component. It is suggested that the model that can describe the cracking, sliding or heaving of rock mass, and the movement of fragments near the borehole should be selected preferentially, and priority should be given to the material constitutive law that could record the nonlinear mechanical behavior of rock mass near the borehole
Discussion on the Discreteness of the Attenuation Parameters of the Peak Particle Velocity Induced by Blasting
The research on the attenuation law of blasting vibration has become the foundation and precondition of the effective control of blasting vibration damage. Aiming at the characteristics of low frequency, low velocity, and strong amplitude of the R wave, an improved wave component separation method based on R wave suppression is proposed. Combined with the measured vibration signals of a field test, the attenuation parameters of different types of waves in the propagation process of blasting seismic waves are studied. The analysis results show that, in the process of blasting seismic wave propagation, the attenuation parameters of different types of waves are significantly different. With an increase in propagation distance, the proportion of the different types of waves will also change. The study of attenuation law with only coupled particle peak vibration velocity often showed high discreteness. The fitting correlation coefficient and prediction accuracy of peak vibration velocity without distinguishing wave modes are lower than those induced by the P wave or R wave alone, which should be attributed to the conversion of dominant wave modes in blasting vibration at different distances