52 research outputs found
An Alarm System For Segmentation Algorithm Based On Shape Model
It is usually hard for a learning system to predict correctly on rare events
that never occur in the training data, and there is no exception for
segmentation algorithms. Meanwhile, manual inspection of each case to locate
the failures becomes infeasible due to the trend of large data scale and
limited human resource. Therefore, we build an alarm system that will set off
alerts when the segmentation result is possibly unsatisfactory, assuming no
corresponding ground truth mask is provided. One plausible solution is to
project the segmentation results into a low dimensional feature space; then
learn classifiers/regressors to predict their qualities. Motivated by this, in
this paper, we learn a feature space using the shape information which is a
strong prior shared among different datasets and robust to the appearance
variation of input data.The shape feature is captured using a Variational
Auto-Encoder (VAE) network that trained with only the ground truth masks.
During testing, the segmentation results with bad shapes shall not fit the
shape prior well, resulting in large loss values. Thus, the VAE is able to
evaluate the quality of segmentation result on unseen data, without using
ground truth. Finally, we learn a regressor in the one-dimensional feature
space to predict the qualities of segmentation results. Our alarm system is
evaluated on several recent state-of-art segmentation algorithms for 3D medical
segmentation tasks. Compared with other standard quality assessment methods,
our system consistently provides more reliable prediction on the qualities of
segmentation results.Comment: Accepted to ICCV 2019 (10 pages, 4 figures
End-to-End Adversarial Shape Learning for Abdomen Organ Deep Segmentation
Automatic segmentation of abdomen organs using medical imaging has many
potential applications in clinical workflows. Recently, the state-of-the-art
performance for organ segmentation has been achieved by deep learning models,
i.e., convolutional neural network (CNN). However, it is challenging to train
the conventional CNN-based segmentation models that aware of the shape and
topology of organs. In this work, we tackle this problem by introducing a novel
end-to-end shape learning architecture -- organ point-network. It takes deep
learning features as inputs and generates organ shape representations as points
that located on organ surface. We later present a novel adversarial shape
learning objective function to optimize the point-network to capture shape
information better. We train the point-network together with a CNN-based
segmentation model in a multi-task fashion so that the shared network
parameters can benefit from both shape learning and segmentation tasks. We
demonstrate our method with three challenging abdomen organs including liver,
spleen, and pancreas. The point-network generates surface points with
fine-grained details and it is found critical for improving organ segmentation.
Consequently, the deep segmentation model is improved by the introduced shape
learning as significantly better Dice scores are observed for spleen and
pancreas segmentation.Comment: Accepted to International Workshop on Machine Learning in Medical
Imaging (MLMI2019
DavarOCR: A Toolbox for OCR and Multi-Modal Document Understanding
This paper presents DavarOCR, an open-source toolbox for OCR and document
understanding tasks. DavarOCR currently implements 19 advanced algorithms,
covering 9 different task forms. DavarOCR provides detailed usage instructions
and the trained models for each algorithm. Compared with the previous
opensource OCR toolbox, DavarOCR has relatively more complete support for the
sub-tasks of the cutting-edge technology of document understanding. In order to
promote the development and application of OCR technology in academia and
industry, we pay more attention to the use of modules that different
sub-domains of technology can share. DavarOCR is publicly released at
https://github.com/hikopensource/Davar-Lab-OCR.Comment: Short paper, Accept by ACM MM202
Establishment of predictive nomogram and web-based survival risk calculator for desmoplastic small round cell tumor: A propensity score-adjusted, population-based study
Desmoplastic small round cell tumor (DSRCT) is a rare undifferentiated malignant soft tissue tumor with a poor prognosis and a lack of consensus on treatment. This study’s objective was to build a nomogram based on clinicopathologic factors and an online survival risk calculator to predict patient prognosis and support therapeutic decision-making. A retrospective cohort analysis of the Surveillance, Epidemiology and End Results (SEER) database was performed for patients diagnosed with DSRCT between 2000 and 2019. The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was applied to identify the individual variables related to overall survival (OS) and cancer-specific survival (CSS), as well as to construct online survival risk calculators and nomogram survival models. The nomogram was employed to categorize patients into different risk groups, and the Kaplan-Meier method was utilized to determine the survival rate of each risk category. Propensity score matching (PSM) was used to assess survival with different therapeutic approaches. A total of 374 patients were included, and the median OS and CSS were 25 (interquartile range 21.9-28.1) months and 27 (interquartile range 23.6-30.3) months, respectively. The nomogram models demonstrated high predictive accuracy. PSM found that patients with triple-therapy had better CSS and OS than those who received surgery plus chemotherapy (median survival times: 49 vs 34 months and 49 vs 35 months, respectively). The nomogram successfully predicted the DSRCT patients survival rate. This approach could assist doctors in evaluating prognoses, identifying high-risk populations, and implementing personalized therapy
ModelScope-Agent: Building Your Customizable Agent System with Open-source Large Language Models
Large language models (LLMs) have recently demonstrated remarkable
capabilities to comprehend human intentions, engage in reasoning, and design
planning-like behavior. To further unleash the power of LLMs to accomplish
complex tasks, there is a growing trend to build agent framework that equips
LLMs, such as ChatGPT, with tool-use abilities to connect with massive external
APIs. In this work, we introduce ModelScope-Agent, a general and customizable
agent framework for real-world applications, based on open-source LLMs as
controllers. It provides a user-friendly system library, with customizable
engine design to support model training on multiple open-source LLMs, while
also enabling seamless integration with both model APIs and common APIs in a
unified way. To equip the LLMs with tool-use abilities, a comprehensive
framework has been proposed spanning over tool-use data collection, tool
retrieval, tool registration, memory control, customized model training, and
evaluation for practical real-world applications. Finally, we showcase
ModelScopeGPT, a real-world intelligent assistant of ModelScope Community based
on the ModelScope-Agent framework, which is able to connect open-source LLMs
with more than 1000 public AI models and localized community knowledge in
ModelScope. The ModelScope-Agent
library\footnote{https://github.com/modelscope/modelscope-agent} and online
demo\footnote{https://modelscope.cn/studios/damo/ModelScopeGPT/summary} are now
publicly available
Risk factors of acute ischemic stroke and the role of angiotensin I in predicting prognosis of patients undergoing endovascular thrombectomy
PurposeThe interaction between the renin-angiotensin system (RAS) and the acute ischemic stroke (AIS) is definite but not fully understood. This study aimed to analyze the risk factors of AIS and explore the role of serum indicators such as angiotensin I (Ang I) in the prognosis of patients undergoing endovascular thrombectomy (EVT).Patients and methodsPatients with AIS who underwent EVT and healthy controls were retrospectively enrolled in this study, and the patients were divided into a good or a poor prognosis group. We compared Ang I, blood routine indexes, biochemical indexes, electrolyte indexes, and coagulation indexes between patients and controls. We used univariate and multivariate logistic regression analyses to evaluate possible risk factors for AIS and the prognosis of patients undergoing EVT. Independent risk factors for the prognosis of patients undergoing EVT were identified through multifactorial logistic regression analyses to construct diagnostic nomograms, further assessed by receiver operating characteristic curves (ROC).ResultsConsistent with previous studies, advanced age, high blood glucose, high D-dimer, and high prothrombin activity are risk factors for AIS. In addition, Ang I levels are lower in AIS compared to the controls. The level of Ang I was higher in the good prognosis group. Furthermore, we developed a nomogram to evaluate its ability to predict the prognosis of AIS after EVT. The AUC value of the combined ROC model (Ang I and albumin-globulin ratio (AGR)) was 0.859.ConclusionsIn conclusion, advanced age, high blood glucose, high D-dimer, and high prothrombin activity are risk factors for AIS. The combined Ang I and AGR model has a good predictive ability for the prognosis of AIS patients undergoing arterial thrombectomy
CancerUniT: Towards a Single Unified Model for Effective Detection, Segmentation, and Diagnosis of Eight Major Cancers Using a Large Collection of CT Scans
Human readers or radiologists routinely perform full-body multi-organ
multi-disease detection and diagnosis in clinical practice, while most medical
AI systems are built to focus on single organs with a narrow list of a few
diseases. This might severely limit AI's clinical adoption. A certain number of
AI models need to be assembled non-trivially to match the diagnostic process of
a human reading a CT scan. In this paper, we construct a Unified Tumor
Transformer (CancerUniT) model to jointly detect tumor existence & location and
diagnose tumor characteristics for eight major cancers in CT scans. CancerUniT
is a query-based Mask Transformer model with the output of multi-tumor
prediction. We decouple the object queries into organ queries, tumor detection
queries and tumor diagnosis queries, and further establish hierarchical
relationships among the three groups. This clinically-inspired architecture
effectively assists inter- and intra-organ representation learning of tumors
and facilitates the resolution of these complex, anatomically related
multi-organ cancer image reading tasks. CancerUniT is trained end-to-end using
a curated large-scale CT images of 10,042 patients including eight major types
of cancers and occurring non-cancer tumors (all are pathology-confirmed with 3D
tumor masks annotated by radiologists). On the test set of 631 patients,
CancerUniT has demonstrated strong performance under a set of clinically
relevant evaluation metrics, substantially outperforming both multi-disease
methods and an assembly of eight single-organ expert models in tumor detection,
segmentation, and diagnosis. This moves one step closer towards a universal
high performance cancer screening tool.Comment: ICCV 2023 Camera Ready Versio
- …