14 research outputs found

    Brittle Creep Failure, Critical Behavior, and Time-to-Failure Prediction of Concrete under Uniaxial Compression

    Get PDF
    Understanding the time-dependent brittle deformation behavior of concrete as a main building material is fundamental for the lifetime prediction and engineering design. Herein, we present the experimental measures of brittle creep failure, critical behavior, and the dependence of time-to-failure, on the secondary creep rate of concrete under sustained uniaxial compression. A complete evolution process of creep failure is achieved. Three typical creep stages are observed, including the primary (decelerating), secondary (steady state creep regime), and tertiary creep (accelerating creep) stages. The time-to-failure shows sample-specificity although all samples exhibit a similar creep process. All specimens exhibit a critical power-law behavior with an exponent of −0.51 ± 0.06, approximately equal to the theoretical value of −1/2. All samples have a long-term secondary stage characterized by a constant strain rate that dominates the lifetime of a sample. The average creep rate expressed by the total creep strain over the lifetime (tf-t0) for each specimen shows a power-law dependence on the secondary creep rate with an exponent of −1. This could provide a clue to the prediction of the time-to-failure of concrete, based on the monitoring of the creep behavior at the steady stage

    USP38 Inhibits Zika Virus Infection by Removing Envelope Protein Ubiquitination

    No full text
    Zika virus (ZIKV) is a mosquito-borne flavivirus, and its infection may cause severe neurodegenerative diseases. The outbreak of ZIKV in 2015 in South America has caused severe human congenital and neurologic disorders. Thus, it is vitally important to determine the inner mechanism of ZIKV infection. Here, our data suggested that the ubiquitin-specific peptidase 38 (USP38) played an important role in host resistance to ZIKV infection, during which ZIKV infection did not affect USP38 expression. Mechanistically, USP38 bound to the ZIKV envelope (E) protein through its C-terminal domain and attenuated its K48-linked and K63-linked polyubiquitination, thereby repressed the infection of ZIKV. In addition, we found that the deubiquitinase activity of USP38 was essential to inhibit ZIKV infection, and the mutant that lacked the deubiquitinase activity of USP38 lost the ability to inhibit infection. In conclusion, we found a novel host protein USP38 against ZIKV infection, and this may represent a potential therapeutic target for the treatment and prevention of ZIKV infection

    Assessment of Excavation Broken Zone around Gateways under Various Geological Conditions: A Case Study in Sichuan Province, China

    No full text
    To study common failure characteristics of gateways, a total of 55 typical gateways at coal mines, in Sichuan Province, China, were selected for investigating the rules of broken widths based on the ground-penetrating radar (GPR) technique and numerical model. Results indicated that the broken width values around the gateways were larger than 1.5 m, and those in the roof and high side wall were larger than those in the low side wall, as a whole. The width values had close relationships with the thickness of the coal seam and immediate roof, angle of the coal seam, and depth of the gateways. Furthermore, combined with the plastic zone of numerical models in 3-Dimensional Distinct Element Code (3DEC) and the broken width, we obtained the excavation broken zone (EBZ) cross-section diagram for each gateway and determined that the EBZ appeared to have a basically elliptical shape—with the long axis along the seam inclination direction and the short axis along the vertical direction of the rock layer—and that this elliptical shape was only slightly affected by the gateway cross-section shape. It was observed that the failure extent was greater in the seam inclination direction than in the vertical direction of the rock layer. Obviously, the gateways presented asymmetric failure characteristics and implied that an asymmetric support system should be provided when using bolts, cables, and shotcrete combined with steel mesh and steel belts. Such a support system could improve material parameters and form a combined arch structure in surrounding rocks, with arch crown and arch springing thicknesses that are larger in the roof and high side wall

    The earliest evidence of pattern looms: Han Dynasty tomb models from Chengdu, China

    No full text
    Excavation of the Han Dynasty chambered tomb at Laoguanshan in Chengdu, south-west China, has provided the earliest known evidence of pattern loom technology. Four model looms, along with accompanying artefacts and figurines relating to the weaving process, give insight into the technique of jin silk production. The discovery is hugely significant as it provides the first direct evidence of pattern-weave textile production in ancient China. Jin silk, made using this method, was both valuable and widely distributed, and the design of the machine influenced the invention of later looms and the spread of technology throughout Eurasia and Europe, representing great technological accomplishment for the second century BC

    Rapid Response of Runoff Carrying Nitrogen Loss to Extreme Rainfall in Gentle Slope Farmland in the Karst Area of SW China

    No full text
    Nitrogen loss is the main reason for land quality degradation and productivity decline and an important factor in groundwater pollution. Extreme rainfall has occurred frequently in Karst areas of southwest China in recent years. It is of great significance to study the response of soil nitrogen loss to extreme rainfall in Karst areas to prevent and treat land quality degradation and non-point source pollution. In this study, field monitoring and indoor artificial rainfall simulation were used to study the loss characteristics of total soil nitrogen (TN), ammonium (NH4+-N) nitrogen, and nitrate-nitrogen (NO3−-N) in Karst bare slope farmland (slope angles of 5° and 10°) under extreme rainfall conditions. The results showed that: (1) Extreme rainfall (90 mm/h) increased the surface runoff, middle soil runoff, and underground runoff by 1.68 times, 1.16 times, and 1.43 times, respectively, compared with moderate rainfall (60 mm/h), so that nitrogen loss increased with runoff. (2) The loss of nitrate-nitrogen in surface, soil, and underground under extreme rainfall conditions was 223.99, 147.93, and 174.02% higher than that under moderate rainfall conditions, respectively; the nitrate losses were 203.78, 160.18, and 195.39% higher, respectively. Total nitrogen losses were 187.33, 115.45, and 138.68% higher, respectively. (3) The influencing factors of total soil nitrogen and nitrate-nitrogen loss in Karst slope farmland were slope > rainfall duration > rainfall intensity, while the influencing factors of ammonium nitrogen loss were rainfall duration > slope > rainfall intensity. Therefore, in controlling nitrogen loss in Karst slope farmland, changing slope degree and increasing farmland coverage may be useful measures to slow the nitrogen loss caused by extreme rainfall

    STING promotes NLRP3 localization in ER and facilitates NLRP3 deubiquitination to activate the inflammasome upon HSV-1 infection.

    No full text
    One of the fundamental reactions of the innate immune responses to pathogen infection is the release of pro-inflammatory cytokines, including IL-1β, processed by the NLRP3 inflammasome. The stimulator of interferon genes (STING) has the essential roles in innate immune response against pathogen infections. Here we reveal a distinct mechanism by which STING regulates the NLRP3 inflammasome activation, IL-1β secretion, and inflammatory responses in human cell lines, mice primary cells, and mice. Interestingly, upon HSV-1 infection and cytosolic DNA stimulation, STING binds to NLRP3 and promotes the inflammasome activation through two approaches. First, STING recruits NLRP3 and facilitates NLRP3 localization in the endoplasmic reticulum, thereby facilitating the inflammasome formation. Second, STING interacts with NLRP3 and attenuates K48- and K63-linked polyubiquitination of NLRP3, thereby promoting the inflammasome activation. Collectively, we demonstrate that the cGAS-STING-NLRP3 signaling is essential for host defense against HSV-1 infection
    corecore