131 research outputs found

    MonoNeuralFusion: Online Monocular Neural 3D Reconstruction with Geometric Priors

    Full text link
    High-fidelity 3D scene reconstruction from monocular videos continues to be challenging, especially for complete and fine-grained geometry reconstruction. The previous 3D reconstruction approaches with neural implicit representations have shown a promising ability for complete scene reconstruction, while their results are often over-smooth and lack enough geometric details. This paper introduces a novel neural implicit scene representation with volume rendering for high-fidelity online 3D scene reconstruction from monocular videos. For fine-grained reconstruction, our key insight is to incorporate geometric priors into both the neural implicit scene representation and neural volume rendering, thus leading to an effective geometry learning mechanism based on volume rendering optimization. Benefiting from this, we present MonoNeuralFusion to perform the online neural 3D reconstruction from monocular videos, by which the 3D scene geometry is efficiently generated and optimized during the on-the-fly 3D monocular scanning. The extensive comparisons with state-of-the-art approaches show that our MonoNeuralFusion consistently generates much better complete and fine-grained reconstruction results, both quantitatively and qualitatively.Comment: 12 pages, 12 figure

    K-Domain Splicing Factor OsMADS1 Regulates Open Hull Male Sterility in Rice

    Get PDF
    AbstractWe identified the rice floral organ development mutant, termed as open hull and male sterile 1 (ohms1), from the progeny of the indica restorer line Zhonghui 8015 treated with 60Co γ-ray irradiation. The ohms1 mutant exhibited an open hull and lemma- and palea-like structure conversion between the anthers and stigma, which resulted in the ohms1 mutant spikelet showing ‘tridentate lemma’. The ohms1 mutant was entirely sterile but had 60%–70% fertile pollen. Genetic analysis and gene mapping showed that ohms1 was controlled by a single recessive gene, and the mutant gene was fine-mapped to a 42-kb interval on the short arm of chromosome 3 between markers KY2 and KY29. Sequence analysis of the four open reading frames in this region revealed that the mutant carried a single nucleotide transformation (A to G) at the last base of the fifth intron, which was likely corresponded to ohms1 phynotype, in an MIKC type MADS-box gene OsMADS1 (LOC_Os03g11614). Enzyme digestion and cDNA sequencing further indicated that the variable splicing was responsible for the deletion of the sixth exon in ohms1, but no structural changes in the MADS domain or amino acid frame shifts appeared. Additionally, real-time fluorescent quantitative PCR analysis showed that the OsMADS1 expression level decreased significantly in the ohms1 mutant. The expression levels of rice flowering factors and floral glume development-related genes also changed significantly. These results demonstrate that OsMADS1 may play an important role in rice floral organ development, particularly in floral glume development and floret primordium differentiation

    A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III

    Full text link
    We established a method on measuring the \dzdzb mixing parameter yy for BESIII experiment at the BEPCII e+e−e^+e^- collider. In this method, the doubly tagged ψ(3770)→D0D0‾\psi(3770) \to D^0 \overline{D^0} events, with one DD decays to CP-eigenstates and the other DD decays semileptonically, are used to reconstruct the signals. Since this analysis requires good e/πe/\pi separation, a likelihood approach, which combines the dE/dxdE/dx, time of flight and the electromagnetic shower detectors information, is used for particle identification. We estimate the sensitivity of the measurement of yy to be 0.007 based on a 20fb−120fb^{-1} fully simulated MC sample.Comment: 6 pages, 7 figure

    miR-182 Regulates Metabolic Homeostasis by Modulating Glucose Utilization in Muscle

    Get PDF
    SummaryUnderstanding the fiber-type specification and metabolic switch in skeletal muscle provides insights into energy metabolism in physiology and diseases. Here, we show that miR-182 is highly expressed in fast-twitch muscle and negatively correlates with blood glucose level. miR-182 knockout mice display muscle loss, fast-to-slow fiber-type switching, and impaired glucose metabolism. Mechanistic studies reveal that miR-182 modulates glucose utilization in muscle by targeting FoxO1 and PDK4, which control fuel selection via the pyruvate dehydrogenase complex (PDHC). Short-term high-fat diet (HFD) feeding reduces muscle miR-182 levels by tumor necrosis factor α (TNFα), which contributes to the upregulation of FoxO1/PDK4. Restoration of miR-182 expression in HFD-fed mice induces a faster muscle phenotype, decreases muscle FoxO1/PDK4 levels, and improves glucose metabolism. Together, our work establishes miR-182 as a critical regulator that confers robust and precise controls on fuel usage and glucose homeostasis. Our study suggests that a metabolic shift toward a faster and more glycolytic phenotype is beneficial for glucose control

    A huge-amplitude white-light superflare on a L0 brown dwarf discovered by GWAC survey

    Full text link
    White-light superflares from ultra cool stars are thought to be resulted from magnetic reconnection, but the magnetic dynamics in a fully convective star is not clear yet. In this paper, we report a stellar superflare detected with the Ground Wide Angle Camera (GWAC), along with rapid follow-ups with the F60A, Xinglong 2.16m and LCOGT telescopes. The effective temperature of the counterpart is estimated to be 2200±502200\pm50K by the BT-Settl model, corresponding to a spectral type of L0. The R−R-band light curve can be modeled as a sum of three exponential decay components, where the impulsive component contributes a fraction of 23\% of the total energy, while the gradual and the shallower decay phases emit 42\% and 35\% of the total energy, respectively. The strong and variable Balmer narrow emission lines indicate the large amplitude flare is resulted from magnetic activity. The bolometric energy released is about 6.4×10336.4\times10^{33} ergs, equivalent to an energy release in a duration of 143.7 hours at its quiescent level. The amplitude of ΔR=−8.6\Delta R=-8.6 mag ( or ΔV=−11.2\Delta V=-11.2 mag), placing it one of the highest amplitudes of any ultra cool star recorded with excellent temporal resolution. We argue that a stellar flare with such rapidly decaying and huge amplitude at distances greater than 1 kpc may be false positive in searching for counterparts of catastrophic events such as gravitational wave events or gamma-ray bursts, which are valuable in time-domain astronomy and should be given more attention.Comment: 9 pages, 5 figures, 1 table, MNRAS accepte

    Elevated Plasma Levels of Drebrin in Glaucoma Patients With Neurodegeneration

    Get PDF
    Glaucoma is an optic neuropathy characterized by progressive degeneration of retinal ganglion cells (RGCs). Aberrations in several cytoskeletal proteins, such as tau have been implicated in the pathogenesis of neurodegenerative diseases, could be initiating factors in glaucoma progression and occurring prior to axon degeneration. Developmentally regulated brain protein (Drebrin or DBN1) is an evolutionarily conserved actin-binding protein playing a prominent role in neurons and is implicated in neurodegenerative diseases. However, the relationship between circulating DBN1 levels and RGC degeneration in glaucoma patients remains unclear. In our preliminary study, we detected drebrin protein in the plasma of glaucoma patients using proteomic analysis. Subsequently, we recruited a total of 232 patients including primary angle-closure glaucoma (PACG), primary open-angle glaucoma (POAG) and Posner-Schlossman syndrome (PS) and measured its DBN1 plasma levels. We observed elevated DBN1 plasma levels in patients with primary glaucoma but not in patients with PS compared to nonaxonopathic controls. Interestingly, in contrast to tau plasma levels increased in all groups of patients, elevated drebrin plasma levels correlated with retinal nerve fiber layer defect (RNFLD) in glaucoma patients. To further explore the expression of DBN1 in neurodegeneration, we conducted experiment of optic nerve crush (ONC) models, and observed increased expression of DBN1 in the serum as well as in the retina and then decreased after ONC. This result reinforces the potentiality of circulating DBN1 levels are increased in glaucoma patients with neurodegeneration. Taken together, our findings suggest that circulating DBN1 levels correlated with RNFLD and may reflect the severity of RGCs injury in glaucoma patients. Combining measurement of circulating drebrin and tau levels may be a useful indicator for monitoring progression of neurodegenerative diseases

    Pairing symmetry and properties of iron-based high temperature superconductors

    Full text link
    Pairing symmetry is important to indentify the pairing mechanism. The analysis becomes particularly timely and important for the newly discovered iron-based multi-orbital superconductors. From group theory point of view we classified all pairing matrices (in the orbital space) that carry irreducible representations of the system. The quasiparticle gap falls into three categories: full, nodal and gapless. The nodal-gap states show conventional Volovik effect even for on-site pairing. The gapless states are odd in orbital space, have a negative superfluid density and are therefore unstable. In connection to experiments we proposed possible pairing states and implications for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio
    • …
    corecore