19,742 research outputs found

    Plasma removal of Parylene C

    Get PDF
    Parylene C, an emerging material in microelectromechanical systems, is of particular interest in biomedical and lab-on-a-chip applications where stable, chemically inert surfaces are desired. Practical implementation of Parylene C as a structural material requires the development of micropatterning techniques for its selective removal. Dry etching methods are currently the most suitable for batch processing of Parylene structures. A performance comparison of three different modes of Parylene C plasma etching was conducted using oxygen as the primary reactive species. Plasma, reactive ion and deep reactive ion etching techniques were explored. In addition, a new switched chemistry process with alternating cycles of fluoropolymer deposition and oxygen plasma etching was examined to produce structures with vertical sidewalls. Vertical etch rates, lateral etch rates, anisotropy and sidewall angles were characterized for each of the methods. This detailed characterization was enabled by the application of replica casting to obtain cross sections of etched structures in a non-destructive manner. Application of the developed etch recipes to the fabrication of complex Parylene C microstructures is also discussed
    • …
    corecore