8,927 research outputs found
THE APPLICATION OF TIO2 NANOPARTICLES ON WASTEWATER TREATMENT
Master'sMASTER OF SCIENC
Recommended from our members
Behavior and modeling of reinforced concrete slab-column connections
textCivil, Architectural, and Environmental Engineerin
Branching Fractions and CP Asymmetries of the Quasi-Two-Body Decays in within PQCD Approach
Motivated by the first untagged decay-time-integrated amplitude analysis of
decays performed by LHCb collaboration, where the
decay amplitudes are modeled to contain the resonant contributions from
intermediate resonances , and , we
comprehensively investigate the quasi-two-body decays, and calculate the branching fractions and
the time-dependent asymmetries within the perturbative QCD approach based
on the factorization. In the quasi-two-body space region the calculated
branching fractions with the considered intermediate resonances are in good
agreement with the experimental results of LHCb by adopting proper pair
wave function, describing the interaction between the kaon and pion in the
pair. Furthermore,within the obtained branching fractions of the
quasi-two-body decays, we also calculate the branching fractions of
corresponding two-body decays, and the results consist with the LHCb
measurements and the earlier studies with errors. For these considered decays,
since the final states are not flavour-specific, the time-dependent could
be measured. We calculate six -violation observables, which can be tested
in the ongoing LHCb experiment.Comment: 20 page
Cabibbo-Kobayashi-Maskawa-favored decays to a scalar meson and a meson
Within the perturbative QCD approach, we investigated the
Cabibbo-Kobayashi-Maskawa-favored ("" denoting the
scalar meson) decays on the basis of the two-quark picture. Supposing the
scalar mesons are the ground states or the first excited states, we calculated
the the branching ratios of 72 decay modes. Most of the branching ratios are in
the range to , which can be tested in the ongoing LHCb
experiment and the forthcoming Belle-II experiment. Some decays, such as and , could be used to probe the inner structure and the character
of the scalar mesons, if the experiments are available. In addition, the ratios
between the and provide a potential way to determine the mixing
angle between and . Moreover, since in the standard model
these decays occur only through tree operators and have no asymmetries,
any deviation will be signal of the new physics beyond the standard model.Comment: 2 figures, 6 table
On the turbulent flow models in modelling of omni-flow wind turbine
Yong Chen, Pei Ying, Yigeng Xu, Yuan Tian, 'On the turbulent flow models in modelling of omni-flow wind turbine', paper presented at The International Conference on Next Generation Wind Energy (ICNGWE2014), the Universidad Europa de Madrid, Madrid, Spain, 7th-10th October 2014.The computational fluid dynamics (CFD) has a wide application in the wind energy industry. In CFD simulations, a turbulence model plays a significantly important role in accuracy and resource cost. In this paper, a novel wind turbine, omni-flow wind turbine, was investigated with different turbulence models. Four turbulence models, standard k-ε, realizable k-ε, standard k-ω and SST k-ω models, were employed for this wind turbine in order to assess the best numerical configuration. The performance of these four turbulence models was validated with wind tunnel tests. It is evident that the realizable k-ε turbulence model is most suitable to simulate this novel wind turbine
Spectral Method for Fatigue Damage Assessment of Structures with Uncertain Parameters
This study presents a spectral method for fatigue damage evaluation of linear structures with uncertain-but-bounded parameters subjected to the stationary multi-correlated Gaussian random excitation. The first step of the proposed method is to model uncertain parameters by introducing interval theory. Within the framework of interval analysis, the approximate expressions of the bounds of spectral moments of generic response are obtained by the improved interval analysis via the Extra Unitary Interval and Interval Rational Series Expansion. Based on the cumulative damage theory and the Tovo-Benasciutti method, the lower and upper bounds of expected fatigue damage rate are accurately evaluated by properly combining the bounds of the spectral parameters of the power density spectral function of stress of critical points. Finally, a numerical example concerning a truss under random excitation is used to illustrate the accuracy and efficiency of the proposed method by comparing with the vertex method
- …