2,900 research outputs found
Preparation and properties of ZnO-based nanostructured films with light trapping eff ects
In this paper, ZnO-based nanostructured films were prepared by hydrothermal method on ZnO seed layers obtained
by sol-gel method and AZO transparent conductive glass. X RD, SEM, sheet resistance test, transmittance and haze spectra were used
to characterize the structure, morphology, optoelectronic properties and light trapping abilities of the films. The effects of seed layer
concentration and hydrothermal growth temperature on the characteristics of ZnO-based nanostructured fi lms were studied, and the prepared
fi lms had light trapping eff ects and high total transmittance in the visible light region
DiffEditor: Boosting Accuracy and Flexibility on Diffusion-based Image Editing
Large-scale Text-to-Image (T2I) diffusion models have revolutionized image
generation over the last few years. Although owning diverse and high-quality
generation capabilities, translating these abilities to fine-grained image
editing remains challenging. In this paper, we propose DiffEditor to rectify
two weaknesses in existing diffusion-based image editing: (1) in complex
scenarios, editing results often lack editing accuracy and exhibit unexpected
artifacts; (2) lack of flexibility to harmonize editing operations, e.g.,
imagine new content. In our solution, we introduce image prompts in
fine-grained image editing, cooperating with the text prompt to better describe
the editing content. To increase the flexibility while maintaining content
consistency, we locally combine stochastic differential equation (SDE) into the
ordinary differential equation (ODE) sampling. In addition, we incorporate
regional score-based gradient guidance and a time travel strategy into the
diffusion sampling, further improving the editing quality. Extensive
experiments demonstrate that our method can efficiently achieve
state-of-the-art performance on various fine-grained image editing tasks,
including editing within a single image (e.g., object moving, resizing, and
content dragging) and across images (e.g., appearance replacing and object
pasting). Our source code is released at
https://github.com/MC-E/DragonDiffusion
DragonDiffusion: Enabling Drag-style Manipulation on Diffusion Models
Despite the ability of existing large-scale text-to-image (T2I) models to
generate high-quality images from detailed textual descriptions, they often
lack the ability to precisely edit the generated or real images. In this paper,
we propose a novel image editing method, DragonDiffusion, enabling Drag-style
manipulation on Diffusion models. Specifically, we construct classifier
guidance based on the strong correspondence of intermediate features in the
diffusion model. It can transform the editing signals into gradients via
feature correspondence loss to modify the intermediate representation of the
diffusion model. Based on this guidance strategy, we also build a multi-scale
guidance to consider both semantic and geometric alignment. Moreover, a
cross-branch self-attention is added to maintain the consistency between the
original image and the editing result. Our method, through an efficient design,
achieves various editing modes for the generated or real images, such as object
moving, object resizing, object appearance replacement, and content dragging.
It is worth noting that all editing and content preservation signals come from
the image itself, and the model does not require fine-tuning or additional
modules. Our source code will be available at
https://github.com/MC-E/DragonDiffusion
The role of EGFR mutation as a prognostic factor in survival after diagnosis of brain metastasis in non-small cell lung cancer: A systematic review and meta-analysis
Abstract Background The brain is a common site for metastasis in non-small-cell lung cancer (NSCLC). This study was designed to evaluate the relationship between the mutational of the epidermal growth factor receptor (EGFR) and overall survival (OS) in NSCLC patients with brain metastases. Methods Searches were performed in PubMed, EmBase, and the Cochrane Library to identify studies evaluating the association of EGFR mutation with OS in NSCLC patients through September 2017. Results 4373 NSCLC patients with brain metastases in 18 studies were involved. Mutated EGFR associated with significantly improved OS compared with wild type. Subgroup analyses suggested that this relationship persisted in studies conducted in Eastern, with retrospective design, with sample size ≥500, mean age of patients ≥65.0 years, percentage male < 50.0%, percentage of patients receiving tyrosine kinase inhibitor ≥30.0%. Finally, although significant publication bias was observed using the Egger test, the results were not changed after adjustment using the trim and fill method. Conclusions This meta-analysis suggests that EGFR mutation is an important predictive factor linked to improved OS for NSCLC patients with brain metastases. It can serve as a useful index in the prognostic assessment of NSCLC patients with brain metastases
Bi-level Physics-Informed Neural Networks for PDE Constrained Optimization using Broyden's Hypergradients
Deep learning based approaches like Physics-informed neural networks (PINNs)
and DeepONets have shown promise on solving PDE constrained optimization
(PDECO) problems. However, existing methods are insufficient to handle those
PDE constraints that have a complicated or nonlinear dependency on optimization
targets. In this paper, we present a novel bi-level optimization framework to
resolve the challenge by decoupling the optimization of the targets and
constraints. For the inner loop optimization, we adopt PINNs to solve the PDE
constraints only. For the outer loop, we design a novel method by using
Broyden's method based on the Implicit Function Theorem (IFT), which is
efficient and accurate for approximating hypergradients. We further present
theoretical explanations and error analysis of the hypergradients computation.
Extensive experiments on multiple large-scale and nonlinear PDE constrained
optimization problems demonstrate that our method achieves state-of-the-art
results compared with strong baselines
- …