22,967 research outputs found
Vacuum Condensates and the Anomalous Magnetic Moment of a Dirac Fermion
We address anticipated fermion-antifermion and dimension-4 gauge-field
vacuum-condensate contributions to the magnetic portion of the fermion-photon
vertex function in the presence of a vacuum with nonperturbative content, such
as that of QCD. We discuss how inclusion of such condensate contributions may
lead to a vanishing anomalous magnetic moment, in which case vacuum condensates
may account for the apparent consistency between constituent quark masses
characterizing baryon magnetic moments and those characterizing baryon
spectroscopy.Comment: 32 pages, 5 figures. Submitted to Foundations of Physics (1999
The quantum solvation, adiabatic versus nonadiabatic, and Markovian versus non-Markovian nature of electron transfer rate processes
In this work, we revisit the electron transfer rate theory, with particular
interests in the distinct quantum solvation effect, and the characterizations
of adiabatic/nonadiabatic and Markovian/non-Markovian rate processes. We first
present a full account for the quantum solvation effect on the electron
transfer in Debye solvents, addressed previously in J. Theore. & Comput. Chem.
{\bf 5}, 685 (2006). Distinct reaction mechanisms, including the quantum
solvation-induced transitions from barrier-crossing to tunneling, and from
barrierless to quantum barrier-crossing rate processes, are shown in the fast
modulation or low viscosity regime. This regime is also found in favor of
nonadiabatic rate processes. We further propose to use Kubo's motional
narrowing line shape function to describe the Markovian character of the
reaction. It is found that a non-Markovian rate process is most likely to occur
in a symmetric system in the fast modulation regime, where the electron
transfer is dominant by tunneling due to the Fermi resonance.Comment: 13 pages, 10 figures, submitted to J. Phys. Chem.
Electromagnetic radiation of baryons containing two heavy quarks
The two heavy quarks in a baryon which contains two heavy quarks and a light
one, can constitute a scalar or axial vector diquark. We study electromagnetic
radiations of such baryons, (i) \Xi_{(bc)_1} -> \Xi_{(bc)_0}+\gamma, (ii)
\Xi_{(bc)_1}^* -> \Xi_{(bc)_0}+\gamma, (iii) \Xi_{(bc)_0}^{**}(1/2, l=1) ->
\Xi_{(bc)_0}+\gamma, (iv) \Xi_{(bc)_0}^{**}(3/2, l=1) -> \Xi_{(bc)_0}+\gamma
and (v) \Xi_{(bc)_0}^{**}(3/2, l=2) -> \Xi_{(bc)_0}+\gamma, where
\Xi_{(bc)_{0(1)}}, \Xi^*_{(bc)_1} are S-wave bound states of a heavy scalar or
axial vector diquark and a light quark, and \Xi_{(bc)_0}^{**}(l is bigger than
1) are P- or D-wave bound states of a heavy scalar diquark and a light quark.
Analysis indicates that these processes can be attributed into two categories
and the physical mechanisms which are responsible for them are completely
distinct. Measurements can provide a good judgment for the diquark structure
and better understanding of the physical picture.Comment: 15 pages, Late
- …
