15,727 research outputs found

    Fully gapped superconducting state in Au2Pb: a natural candidate for topological superconductor

    Full text link
    We measured the ultra-low-temperature specific heat and thermal conductivity of Au2_2Pb single crystal, a possible three-dimensional Dirac semimetal with a superconducting transition temperature TcT_c \approx 1.05 K. The electronic specific heat can be fitted by a two-band s-wave model, which gives the gap amplitudes Δ1\Delta_1(0)/kBTck_BT_c = 1.38 and Δ2\Delta_2(0)/kBTck_BT_c = 5.25. From the thermal conductivity measurements, a negligible residual linear term κ0/T\kappa_0/T in zero field and a slow field dependence of κ0/T\kappa_0/T at low field are obtained. These results suggest that Au2_2Pb has a fully gapped superconducting state in the bulk, which is a necessary condition for topological superconductor if Au2_2Pb is indeed one.Comment: 6 pages, 4 figure

    Hysteresis in the quantum Hall regimes in electron double quantum well structures

    Full text link
    We present in this paper experimental results on the transport hysteresis in electron double quantum well structures. Exploring the measurement technique of fixing the magnetic field and sweeping a front gate voltage (Vg), we are able to study the hysteresis by varying the top layer Landau level fillings while maintaining a relatively constant filling factor in the bottom layer, allowing us to tackle the question of the sign of Rxx(up)-Rxx(down), where Rxx(up) is the magnetoresistance when Vg is swept up and Rxx(down) when Vg swept down. Furthermore, we observe that hysteresis is generally stronger in the even integer quantum Hall effect (IQHE) regime than in the odd-IQHE regime. This, we argue, is due to a larger energy gap for an even-IQHE state, determined by the Landau level separation, than that for an odd-IQHE state, determined by the Zeeman splitting

    Depth resolution of Piezoresponse force microscopy

    No full text
    Given that a ferroelectric domain is generally a three dimensional entity, the determination of its area as well as its depth is mandatory for full characterization. Piezoresponse force microscopy (PFM) is known for its ability to map the lateral dimensions of ferroelectric domains with high accuracy. However, no depth profile information has been readily available so far. Here, we have used ferroelectric domains of known depth profile to determine the dependence of the PFM response on the depth of the domain, and thus effectively the depth resolution of PFM detection

    Fast multipole networks

    Full text link
    Two prerequisites for robotic multiagent systems are mobility and communication. Fast multipole networks (FMNs) enable both ends within a unified framework. FMNs can be organized very efficiently in a distributed way from local information and are ideally suited for motion planning using artificial potentials. We compare FMNs to conventional communication topologies, and find that FMNs offer competitive communication performance (including higher network efficiency per edge at marginal energy cost) in addition to advantages for mobility
    corecore