17 research outputs found

    Data-driven extraction of the substructure of quark and gluon jets in proton-proton and heavy-ion collisions

    Full text link
    The different modification of quark- and gluon-initiated jets in the quark-gluon plasma produced in heavy-ion collisions is a long-standing question that has not yet received a definitive answer from experiments. In particular, the relative sizes of the modification of quark and gluon jets differ between theoretical models. Therefore a fully data-driven technique is crucial for an unbiased extraction of the quark and gluon jet spectra and substructure. We perform a proof-of-concept study based on proton-proton and heavy-ion collision events from the PYQUEN generator with statistics accessible in Run 4 of the Large Hadron Collider. We use a statistical technique called topic modeling to separate quark and gluon contributions to jet observables. We demonstrate that jet substructure observables, such as the jet shape and jet fragmentation function, can be extracted using this data-driven method. These results suggest the potential for an experimental determination of quark and gluon jet spectra and their substructure

    Data-driven extraction of the substructure of quark and gluon jets in proton-proton and heavy-ion collisions

    No full text
    The modification of quark- and gluon-initiated jets in the quark-gluon plasma produced in heavy-ion collisions is a long-standing question that has not yet received a definitive answer from experiments. In particular, the size of the modifications differs between theoretical models. Therefore a fully data-driven technique is crucial for an unbiased extraction of the quark and gluon jet spectra and substructure. We demonstrate a fully data-driven method for separating quark and gluon contributions to jet observables using a statistical technique called topic modeling. We will also demonstrate that jet substructures, such as jet shapes and jet fragmentation function, could be extracted using this data-driven method. This proof-of-concept study is based on proton-proton and heavy-ion collision events from the PYQUEN generator with statistics accessible in Run 4 of the Large Hadron Collider. These results suggest the potential for an experimental determination of quark- and gluon-jet spectra and their substructures.M.Eng

    A Review of Polarization-Sensitive Materials for Polarization Holography

    No full text
    Polarization holography has the unique capacity to record and retrieve the amplitude, phase, and polarization of light simultaneously in a polarization-sensitive recording material and has attracted widespread attention. Polarization holography is a noteworthy technology with potential applications in the fields of high-capacity data storage, polarization-controlled optical elements, and other related fields. The choice of its high-performance materials is particularly important. To further develop polarization holography applications and improve the quality of the information recorded (i.e., material sensitivity and resolution), a deeper understanding of such materials is needed. We present an overview of the polarization-sensitive materials, which introduced polarization holographic technology and the development of polarization holographic materials. The three main types of polarization holographic materials are described, including azopolymer materials, photopolymer material, and photorefractive polymer material. We examine the key contributions of each work and present many of the suggestions that have been made to improve the different polarization-sensitive photopolymer materials

    Research on Low-Frequency Stability under Emergency Power Supply Scheme of Photovoltaic and Battery Access Railway Traction Power Supply System

    No full text
    Photovoltaics and batteries can be connected to a traction power supply system through a railway power conditioner (RPC) to switch between different control strategies. This can address power quality issues or provide emergency traction for locomotives that unexpectedly lose power and even break through traditional energy barriers in the railway field, achieving a low-carbon power supply for railway energy, and a mutual backup with substations. However, methods to coordinate the control strategies of PV and the battery locomotive traction have not been clearly revealed, nor has the actual stability of the system. In this study, to address the above issues, an emergency power supply scheme is proposed for the first time that utilizes a dual-mode RPC inverter combined with a coordinated control strategy for the PV and battery, achieving the traction of locomotives. In addition, a one-dimensional impedance model was established for the PV system, battery system, locomotive (CRH3), and RPC projected onto the dq coordinate system, and the critical amplitude margin (CAM) was defined to quantitatively analyze the sensitivity and laws of different parameters concerning the low-frequency stability of the system. At the same time, impedance ratios and passive criteria were used to reveal the stability mechanism, and parameter adjustment criteria and design suggestions were put forward. Finally, the feasibility of the emergency power supply scheme of the “PV–battery locomotive network” coupling system and the correctness of the low-frequency stability study were verified using the Starsim semi-physical experiment platform

    On-target inhibition of Cryptosporidium parvum by nitazoxanide (NTZ) and paclitaxel (PTX) validated using a novel MDR1-transgenic host cell model and algorithms to quantify the effect on the parasite target.

    No full text
    Cryptosporidium parvum is a globally distributed zoonotic protozoan parasite that causes moderate to severe, sometime deadly, watery diarrhea in humans and animals, for which fully effective treatments are yet unavailable. In studying the mechanism of action of drugs against intracellular pathogens, it is important to validate whether the observed anti-infective activity is attributed to the drug action on the pathogen or host target. For the epicellular parasite Cryptosporidium, we have previously developed a concept that the host cells with significantly increased drug tolerance by transient overexpression of the multidrug resistance protein-1 (MDR1) could be utilized to evaluate whether and how much the observed anti-cryptosporidial activity of an inhibitor was attributed to the inhibitor's action on the parasite target. However, the transient transfection model was only applicable to evaluating native MDR1 substrates. Here we report an advanced model using stable MDR1-transgenic HCT-8 cells that allows rapid development of novel resistance to non-MDR1 substrates by multiple rounds of drug selection. Using the new model, we successfully validated that nitazoxanide, a non-MDR1 substrate and the only FDA-approved drug to treat human cryptosporidiosis, killed C. parvum by fully (100%) acting on the parasite target. We also confirmed that paclitaxel acted fully on the parasite target, while several other inhibitors including mitoxantrone, doxorubicin, vincristine and ivermectin acted partially on the parasite targets. Additionally, we developed mathematical models to quantify the proportional contribution of the on-parasite-target effect to the observed anti-cryptosporidial activity and to evaluate the relationships between several in vitro parameters, including antiparasitic efficacy (ECi), cytotoxicity (TCi), selectivity index (SI) and Hill slope (h). Owning to the promiscuity of the MDR1 efflux pump, the MDR1-transgenic host cell model could be applied to assess the on-parasite-target effects of newly identified hits/leads, either substrates or non-substrates of MDR1, against Cryptosporidium or other epicellular pathogens

    Comprehensive analysis of the influence of magnetic field gradients on single-beam SERF atomic magnetometer

    No full text
    Magnetic field gradients interfere with the coherence of the atomic ensemble and degrade the performance of the spin-exchange relaxation-free (SERF) atomic magnetometer. In this paper, the influence of magnetic field gradients is incorporated into the response model of single-beam atomic magnetometer, and the theoretical models of transverse relaxation rate, spin polarization and scale factor are established. Based on this model, we find that magnetic field gradients in different directions can cause varying degrees of degradation in the performance parameters of the magnetometer. The magnetic linewidths under different light power and magnetic field gradients are measured using the designed dedicated magnetic field gradients coils, and the spin polarization and magnetic field gradients relaxation rate are obtained through fitting. An unevenness and deviation of the curve are also observed in the experiments, indicating the presence of the magnetic field gradient of approximately 2 nT/cm in the magnetic shields. Furthermore, in a magnetic field gradient environment of 20 nT/cm, the mean of the long-term sensitivity decreased by 3.5 times and the standard deviation increased by 11 times. It shows that the magnetic field gradients will not only affect the signal-to-noise ratio, but also make the magnetometer more vulnerable to external interference when working. The sensitivity and stability of magnetometer will be greatly reduced. The research in this article provides a theoretical and experimental basis for eliminating the influence of magnetic field gradients and improving the accuracy of magnetic field measurements

    The Genome-Wide Identification of Long Non-Coding RNAs Involved in Floral Thermogenesis in Nelumbo nucifera Gaertn

    No full text
    The sacred lotus (Nelumbo nucifera Gaertn.) can maintain a stable floral chamber temperature when blooming, despite ambient temperature fluctuations; however, the long non-coding RNAs (lncRNAs) involved in floral thermogenesis remain unclear. In the present study, we obtain comprehensive lncRNAs expression profiles from receptacles at five developmental stages by strand-specific RNA sequencing to reveal the lncRNAs regulatory mechanism of the floral thermogenesis of N. nucifera. A total of 22,693 transcripts were identified as lncRNAs, of which approximately 44.78% had stage-specific expression patterns. Subsequently, we identified 2579 differential expressed lncRNAs (DELs) regulating 2367 protein-coding genes mainly involved in receptacle development and reproductive process. Then, lncRNAs with floral thermogenesis identified by weighted gene co-expression network analysis (WGCNA) were mainly related to sulfur metabolism and mitochondrial electron transport chains. Meanwhile, 70 lncRNAs were predicted to act as endogenous target mimics (eTMs) for 29 miRNAs and participate in the regulation of 16 floral thermogenesis-related genes. Our dual luciferase reporter assays indicated that lncRNA LTCONS_00068702 acted as eTMs for miR164a_4 to regulate the expression of TrxL2 gene. These results deepen our understanding of the regulation mechanism of floral thermogenesis by lncRNAs and accumulate data for further research

    The Protection of Quinoa Protein on the Quality of Pork Patties during Freeze–Thaw Cycles: Physicochemical Properties, Sensory Quality and Protein Oxidative

    No full text
    The present study investigated the impact of quinoa protein (QP) on the physicochemical properties, sensory quality, and oxidative stability of myofibrillar protein (MP) in pork patties during five freeze–thaw (F-T) cycles. It was observed that repeated F-T cycles resulted in a deterioration of pork patty quality; however, the incorporation of QP effectively mitigated these changes. Throughout the F-T cycles, the sensory quality of the QP-treated group consistently surpassed that of the control group. After five F-T cycles, the thiobarbituric acid reactive substance (TBARS) content in the control group was measured at 0.423 mg/kg, whereas it significantly decreased to 0.347 mg/kg in the QP-treated group (p 2+-ATPase activity exhibited a significant increase of 11.10% in the QP-treated group compared to controls (p p p < 0.05) in the QP-treated group compared to controls. In conclusion, the addition of QP enhanced the quality of pork patties and effectively inhibited the oxidative denaturation of MP during F-T cycles

    High-Temperature Cracking of Pentene to Ethylene and Propylene over H-ZSM-5 Zeolites: Effect of Reaction Conditions and Mechanistic Insights

    No full text
    The effects of reaction conditions on the yield of ethylene and propylene from pentene cracking were investigated in a fixed-bed reactor at 500–750 °C and for a weight hourly space velocity (WHSV) of 15–83 h−1. The total yield of ethylene and propylene reached a maximum (67.8 wt%) at 700 °C and 57 h−1. In order to explore the reaction mechanism at high temperatures, a thermal/catalytic cracking proportion model was established. It was found that the proportion of pentene feed chemically adsorbed with the acid sites and cracked through catalytic cracking was above 88.4%, even at 750 °C. Ethylene and propylene in the products were mainly derived from catalytic cracking rather than thermal cracking at 650–750 °C. In addition, the suitable reaction network for pentene catalytic cracking was deduced and estimated. The results showed that the monomolecular cracking proportion increased from 1% at 500 °C to 95% at 750 °C. The high selectivity of ethylene and propylene at high temperatures was mainly due to the intensification of the monomolecular cracking reaction. After 20 times of regeneration, the acidity and pore structure of the zeolite had hardly changed, and the conversion of pentene remained above 80% at 650 °C
    corecore