21,868 research outputs found
A review of selected methods of predicting base flow environment in supersonic flow
Methods of predicting base flow environment in supersonic flo
Reciprocity in Social Networks with Capacity Constraints
Directed links -- representing asymmetric social ties or interactions (e.g.,
"follower-followee") -- arise naturally in many social networks and other
complex networks, giving rise to directed graphs (or digraphs) as basic
topological models for these networks. Reciprocity, defined for a digraph as
the percentage of edges with a reciprocal edge, is a key metric that has been
used in the literature to compare different directed networks and provide
"hints" about their structural properties: for example, are reciprocal edges
generated randomly by chance or are there other processes driving their
generation? In this paper we study the problem of maximizing achievable
reciprocity for an ensemble of digraphs with the same prescribed in- and
out-degree sequences. We show that the maximum reciprocity hinges crucially on
the in- and out-degree sequences, which may be intuitively interpreted as
constraints on some "social capacities" of nodes and impose fundamental limits
on achievable reciprocity. We show that it is NP-complete to decide the
achievability of a simple upper bound on maximum reciprocity, and provide
conditions for achieving it. We demonstrate that many real networks exhibit
reciprocities surprisingly close to the upper bound, which implies that users
in these social networks are in a sense more "social" than suggested by the
empirical reciprocity alone in that they are more willing to reciprocate,
subject to their "social capacity" constraints. We find some surprising linear
relationships between empirical reciprocity and the bound. We also show that a
particular type of small network motifs that we call 3-paths are the major
source of loss in reciprocity for real networks
Dynamics of Chainlike Molecules on Surfaces
We consider the diffusion and spreading of chainlike molecules on solid
surfaces. We first show that the steep spherical cap shape density profiles,
observed in some submonolayer experiments on spreading polymer films, imply
that the collective diffusion coefficient must be an increasing
function of the surface coverage for small and intermediate coverages.
Through simulations of a discrete model of interacting chainlike molecules, we
demonstrate that this is caused by an entropy-induced repulsive interaction.
Excellent agreement is found between experimental and numerically obtained
density profiles in this case, demonstrating that steep submonolayer film edges
naturally arise due to the diffusive properties of chainlike molecules. When
the entropic repulsion dominates over interchain attractions,
first increases as a function of but then eventually approaches zero
for . The maximum value of decreases for increasing
attractive interactions, leading to density profiles that are in between
spherical cap and Gaussian shapes. We also develop an analytic mean field
approach to explain the diffusive behavior of chainlike molecules. The
thermodynamic factor in is evaluated using effective free energy
arguments, and the chain mobility is calculated numerically using the recently
developed dynamic mean field theory. Good agreement is obtained between theory
and simulations.Comment: 16 pages, 13 Postscript figure
Testing the Effectiveness of Regulation and Competition on Cable Television Rates
Regulation of the cable television industry was marked by remarkable periods of deregulation, re-regulation, and re-deregulation during the 1980s and 1990s. Using FCC firm-level survey data spanning 1993 to 2001, we model and econometrically estimate the effect of regulation and competition on cable rates. Our calculations indicate that while regulation lowered rates for small system operators, it raised them for medium and large systems. Meanwhile, competition consistently decreased rates from 5.6 to 8.8 percent, with even larger declines during periods of regulation. Our results suggest that competition is more effective than regulation in containing cable prices.cable rates, regulation, competition
Testing the Effectiveness of Regulation and Competition on Cable Television Rates
Regulation of the cable television industry was marked by remarkable periods of deregulation, re-regulation, and re-deregulation during the 1980s and 1990s. Using FCC firm-level survey data spanning 1993 to 2001, we model and econometrically estimate the effect of regulation and competition on cable rates. Our calculations indicate that while regulation lowered rates for small system operators, it raised them for medium and large systems. Meanwhile, competition consistently decreased rates from 5.6 to 8.8 percent, with even larger declines during periods of regulation. Our results suggest that competition is more effective than regulation in containing cable prices.cable rates, regulation, competition
Quantum state transfer via the ferromagnetic chain in a spatially modulated field
We show that a perfect quantum state transmission can be realized through a
spin chain possessing a commensurate structure of energy spectrum, which is
matched with the corresponding parity. As an exposition of the mirror inversion
symmetry discovered by Albanese et. al (quant-ph/0405029), the parity matched
the commensurability of energy spectra help us to present the novel
pre-engineered spin systems for quantum information transmission. Based on the
these theoretical analysis, we propose a protocol of near-perfect quantum state
transfer by using a ferromagnetic Heisenberg chain with uniform coupling
constant, but an external parabolic magnetic field. The numerical results shows
that the initial Gaussian wave packet in this system with optimal field
distribution can be reshaped near-perfectly over a longer distance.Comment: 5 pages, 2 figure
- …