822 research outputs found

    Mechanistic insight into the pathology of polyalanine expansion disorders revealed by a mouse model for x linked hypopituitarism

    Get PDF
    Extent: 9 p.Polyalanine expansions in transcription factors have been associated with eight distinct congenital human diseases. It is thought that in each case the polyalanine expansion causes misfolding of the protein that abrogates protein function. Misfolded proteins form aggregates when expressed in vitro; however, it is less clear whether aggregation is of relevance to these diseases in vivo. To investigate this issue, we used targeted mutagenesis of embryonic stem (ES) cells to generate mice with a polyalanine expansion mutation in Sox3 (Sox3-26ala) that is associated with X-linked Hypopituitarism (XH) in humans. By investigating both ES cells and chimeric mice, we show that endogenous polyalanine expanded SOX3 does not form protein aggregates in vivo but rather is present at dramatically reduced levels within the nucleus of mutant cells. Importantly, the residual mutant protein of chimeric embryos is able to rescue a block in gastrulation but is not sufficient for normal development of the hypothalamus, a region that is functionally compromised in Sox3 null embryos and individuals with XH. Together, these data provide the first definitive example of a disease-relevant PA mutant protein that is both nuclear and functional, thereby manifesting as a partial loss-of-function allele.James Hughes Sandra Piltz, Nicholas Rogers, Dale McAninch, Lynn Rowley and Paul Thoma

    Homozygous Missense Mutation in ABR Causes Cerebellar Hypoplasia with Early Lethality - A New Condition Identified by Exome Sequencing?

    Get PDF
    Poster PresentationWe performed whole exome sequencing (WES) in a consanguineous Pakistani family with a recurrent pattern of cerebellar hyposplasia, intra-uterine growth restriction, and various CNS/non-CNS malformations, resulting in early lethality (1 perinatal death and 1 intrauterine death). Karyotype (in the first pregnancy) and oligonucleotide array (in the 2nd affected pregnancy) were normal. Parents declined post-mortem examination. By WES, a novel homozygous missense mutation was identified in the ABR gene (ABR: NM_021962.4:c.G2455T: p.A819S) in both affected pregnancies. Both parents were identified to be heterozygous of the same mutation while the healthy child did not carry any mutation. The mutation is located in a highly conserved region and is predicted to be highly damaging by all the commonly used in silico mutation prediction tools. The protein encoded by ABR gene contains a GTPase-activating protein domain, a domain found in members of the Rho family of GTP-binding proteins. Previous reports showed that OPHN1, mutations in which cause X-linked mental retardation with cerebellar hypoplasia (OMIM300486), also encodes for a regulator of GTPase-activating protein. Both OPHN1 and ABR are highly expressed in the human brain especially in the cerebellum, and both contain a GTPase-activating domain. Rho proteins are important mediators of intracellular signal transduction, which affects cell migration and cell morphogenesis. Other studies have demonstrated a regulatory role of Rho GTPase in differentiation of cerebellar neurons, and that ethanolassociated impairment of Rho GTPase might contribute to brain defects in fetal alcohol syndrome. Further functional studies, including zebrafish morpholino studies, are currently ongoing. WES can be helpful in individual families with undiagnosed lethal MCA syndromes to identify potentially responsible autosomal recessive mutations and may lead to a better understanding of the role of various developmental pathways in human embryogenesis.published_or_final_versio

    Image-guided intensity modulated radiotherapy with helical tomotherapy for postoperative treatment of high-risk oral cavity cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to assess the treatment results and toxicity profiles of helical tomotherapy (HT) for postoperative high-risk oral cavity cancer.</p> <p>Methods</p> <p>From December 6, 2006 through October 9, 2009, 19 postoperative high-risk oral cavity cancer patients were enrolled. All of the patients received HT with (84%) or without (16%) chemotherapy.</p> <p>Results</p> <p>The median follow-up time was 17 months. The 2-year overall survival, disease-free survival, locoregional control, and distant metastasis-free rates were 94%, 84%, 92%, and 94%, respectively. The package of overall treatment time > 13 wk, the interval between surgery and radiation ≤ 6 wk, and the overall treatment time of radiation ≤ 7 wk was 21%, 84%, and 79%, respectively. The percentage of grade 3 mucositis, dermatitis, and leucopenia was 42%, 5% and 5%, respectively.</p> <p>Conclusions</p> <p>HT achieved encouraging clinical outcomes for postoperative high-risk oral cavity cancer patients with high compliance. A long-term follow-up study is needed to confirm these preliminary findings.</p

    RASSF1A–LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2

    Get PDF
    Genomic instability is a key hallmark of cancer leading to tumour heterogeneity and therapeutic resistance. ​BRCA2 has a fundamental role in error-free DNA repair but also sustains genome integrity by promoting ​RAD51 nucleofilament formation at stalled replication forks. ​CDK2 phosphorylates ​BRCA2 (pS3291-​BRCA2) to limit stabilizing contacts with polymerized ​RAD51; however, how replication stress modulates ​CDK2 activity and whether loss of pS3291-​BRCA2 regulation results in genomic instability of tumours are not known. Here we demonstrate that the Hippo pathway kinase ​LATS1 interacts with ​CDK2 in response to genotoxic stress to constrain pS3291-​BRCA2 and support ​RAD51 nucleofilaments, thereby maintaining genomic fidelity during replication stalling. We also show that ​LATS1 forms part of an ​ATR-mediated response to replication stress that requires the tumour suppressor ​RASSF1A. Importantly, perturbation of the ​ATR–​RASSF1A–​LATS1 signalling axis leads to genomic defects associated with loss of ​BRCA2 function and contributes to genomic instability and ‘BRCA-ness’ in lung cancers

    Extremal solutions for p-Laplacian fractional integro-differential equation with integral conditions on infinite intervals via iterative computation

    Get PDF
    We study the extremal solutions of a class of fractional integro-differential equation with integral conditions on infinite intervals involving the p-Laplacian operator. By means of the monotone iterative technique and combining with suitable conditions, the existence of the maximal and minimal solutions to the fractional differential equation is obtained. In addition, we establish iterative schemes for approximating the solutions, which start from the known simple linear functions. Finally, an example is given to confirm our main results

    Genomic Arrangement of Regulons in Bacterial Genomes

    Get PDF
    Regulons, as groups of transcriptionally co-regulated operons, are the basic units of cellular response systems in bacterial cells. While the concept has been long and widely used in bacterial studies since it was first proposed in 1964, very little is known about how its component operons are arranged in a bacterial genome. We present a computational study to elucidate of the organizational principles of regulons in a bacterial genome, based on the experimentally validated regulons of E. coli and B. subtilis. Our results indicate that (1) genomic locations of transcriptional factors (TFs) are under stronger evolutionary constraints than those of the operons they regulate so changing a TF's genomic location will have larger impact to the bacterium than changing the genomic position of any of its target operons; (2) operons of regulons are generally not uniformly distributed in the genome but tend to form a few closely located clusters, which generally consist of genes working in the same metabolic pathways; and (3) the global arrangement of the component operons of all the regulons in a genome tends to minimize a simple scoring function, indicating that the global arrangement of regulons follows simple organizational principles

    IGF-1 Induction by Acylated Steryl β-Glucosides Found in a Pre-Germinated Brown Rice Diet Reduces Oxidative Stress in Streptozotocin-Induced Diabetes

    Get PDF
    BACKGROUND: The pathology of diabetic neuropathy involves oxidative stress on pancreatic β-cells, and is related to decreased levels of Insulin-like growth factor 1 (IGF-1). Acylated steryl β-glucoside (PR-ASG) found in pre-germiated brown rice is a bioactive substance exhibiting properties that enhance activity of homocysteine-thiolactonase (HTase), reducing oxidative stress in diabetic neuropathy. The biological importance of PR-ASG in pancreatic β-cells remains unknown. Here we examined the effects of PR-ASG on IGF-1 and glucose metabolism in β-cells exposed to oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, a pre-germinated brown rice (PR)-diet was tested in streptozotocin (STZ)-induced diabetic rats. Compared with diabetic rats fed control diets, the PR-diet fed rats showed an improvement of serum metabolic and neurophysiological parameters. In addition, IGF-1 levels were found to be increased in the serum, liver, and pancreas of diabetic rats fed the PR-diet. The increased IGF-1 level in the pancreas led us to hypothesize that PR-ASG is protective for islet β-cells against the extensive injury of advanced or severe diabetes. Thus we examined PR-ASG to determine whether it showed anti-apoptotic, pro-proliferative effects on the insulin-secreting β-cells line, INS-1; and additionally, whether PR-ASG stimulated IGF-1 autocrine secretion/IGF-1-dependent glucose metabolism. We have demonstrated for the first time that PR-ASG increases IGF-1 production and secretion from pancreatic β-cells. CONCLUSION/SIGNIFICANCE: These findings suggest that PR-ASG may affect pancreatic β-cells through the activation of an IGF-1-dependent mechanism in the diabetic condition. Thus, intake of pre-germinated brown rice may have a beneficial effect in the treatment of diabetes, in particular diabetic neuropathy
    corecore