4 research outputs found

    Biomedical Question Answering: A Survey of Approaches and Challenges

    Full text link
    Automatic Question Answering (QA) has been successfully applied in various domains such as search engines and chatbots. Biomedical QA (BQA), as an emerging QA task, enables innovative applications to effectively perceive, access and understand complex biomedical knowledge. There have been tremendous developments of BQA in the past two decades, which we classify into 5 distinctive approaches: classic, information retrieval, machine reading comprehension, knowledge base and question entailment approaches. In this survey, we introduce available datasets and representative methods of each BQA approach in detail. Despite the developments, BQA systems are still immature and rarely used in real-life settings. We identify and characterize several key challenges in BQA that might lead to this issue, and discuss some potential future directions to explore.Comment: In submission to ACM Computing Survey

    InternLM2 Technical Report

    Full text link
    The evolution of Large Language Models (LLMs) like ChatGPT and GPT-4 has sparked discussions on the advent of Artificial General Intelligence (AGI). However, replicating such advancements in open-source models has been challenging. This paper introduces InternLM2, an open-source LLM that outperforms its predecessors in comprehensive evaluations across 6 dimensions and 30 benchmarks, long-context modeling, and open-ended subjective evaluations through innovative pre-training and optimization techniques. The pre-training process of InternLM2 is meticulously detailed, highlighting the preparation of diverse data types including text, code, and long-context data. InternLM2 efficiently captures long-term dependencies, initially trained on 4k tokens before advancing to 32k tokens in pre-training and fine-tuning stages, exhibiting remarkable performance on the 200k ``Needle-in-a-Haystack" test. InternLM2 is further aligned using Supervised Fine-Tuning (SFT) and a novel Conditional Online Reinforcement Learning from Human Feedback (COOL RLHF) strategy that addresses conflicting human preferences and reward hacking. By releasing InternLM2 models in different training stages and model sizes, we provide the community with insights into the model's evolution
    corecore