6 research outputs found

    Morphological and histochemical identification of telocytes in adult yak epididymis

    No full text
    Abstract Telocytes (TCs) are a newly discovered type of mesenchymal cell that are closely related to the tissue’s internal environment. The study aimed to investigate the morphological identification of TCs in the epididymis of adult yak and their role in the local microenvironment. In this study, transmission electron microscopy (TEM), scanning electron microscopy, immunofluorescence, qRT-PCR, and western blotting were used to analyze the cell morphology of TCs. The results showed that there are two types of TCs in the epididymal stroma of yak by TEM; one type is distributed around the capillaries with full cell bodies, longer TPs, and a large number of secretory vesicles; the other is distributed outside the basement membrane with irregularly long, striped, large nuclei and short telopodes (TPs). In addition, these TCs formed complex TC cell networks through TPs with epididymal interstitial capillaries and basal fibroblasts. TCs often appear near the capillaries and basement membrane by special staining. The surface markers of TCs (CD34, vimentin, and CD117) were positively expressed in the epididymal stroma and epithelium by immunohistochemistry, and immunofluorescence co-expression of vimentin + CD34 and CD117 + CD34 was observed on the surface of TCs. The trends in the mRNA and protein expression of TCs surface markers revealed expression was highest in the caput epididymis. In summary, this is first report of TCs in the epididymis of yak, and two phenotypes of TCs were observed. The existence and distribution characteristics of TCs in the epididymis of plateau yaks provide important clues for further study of the adaptation to reproductive function in the plateau

    A unified MIMO optimization framework relying on the KKT conditions

    No full text
    A popular technique of designing multiple-input multiple-output (MIMO) communication systems relies on optimizing the positive semidefinite covariance matrix at the source. In this paper, a unified MIMO optimization framework based on the Karush-Kuhn-Tucker (KKT) conditions is proposed. In this framework, with the aid of matrix optimization theory, Theorem 1 presents a generic optimal transmit covariance matrix for MIMO systems with diverse objective functions subject to various power constraints and different levels of channel state information (CSI). Specifically, Theorem 1 fundamentally reveals that for a diverse family of MIMO systems, the optimal transmit covariance matrices associated with different objective functions under various power constraints can be derived in a unified generic water-filling-like form. When applying Theorem 1 to the case of multiple general power constraints, we firstly equivalently transform multiple power constraints into a single counterpart by introducing multiple weighting factors based on Pareto optimization theory. The optimal weighting factors can be found by the proposed modified subgradient method. On the other hand, for the imperfect MIMO system with statistical CSI errors, we firstly address the non-convexity of the robust optimization problem by following the idea of alternating optimization. Finally, our numerical results verify the optimal solution structure in Theorem 1 and the global optimality of the proposed modified subgradient method, as well as demonstrate the performance advantages of the proposed alternating optimization algorithm
    corecore