4 research outputs found

    Electron-Hole Symmetry and Magnetic Coupling in Antiferromagnetic LaOFeAs

    Full text link
    When either electron or hole doped at concentrations x∼0.1x\sim 0.1, the LaOFeAs family displays remarkably high temperature superconductivity with Tc_c up to 55 K. In the most energetically stable Q⃗M=(π,π)\vec Q_M = (\pi,\pi) antiferromagnetic (AFM) phase comprised of tetragonal-symmetry breaking alternating chains of aligned spins, there is a deep pseudogap in the Fe 3d states centered at the Fermi energy, and very strong magnetophonon coupling is uncovered. Doping (of either sign) beyond x∼0.1x \sim 0.1 results in Fe 3d heavy mass carriers (m∗∼4−8m^*\sim 4-8) with a large Fermi surface. Calculated Fe-Fe transverse exchange couplings Jij(R)J_{ij}(R) reveal that exchange coupling is strongly dependent on the AFM symmetry and Fe-As distance.Comment: 5 pages, 5 figures, submitted to pr

    57Fe Mossbauer spectroscopy and magnetic measurements of oxygen deficient LaFeAsO

    Full text link
    We report on the magnetic behavior of oxygen deficient LaFeAsO1-x (x-0.10) compound, prepared by one-step synthesis, which crystallizes in the tetragonal (S.G. P4/nmm) structure at room temperature. Resistivity measurements show a strong anomaly near 150 K, which is ascribed to the spin density wave (SDW) instability. On the other hand, dc magnetization data shows paramagnetic-like features down to 5 K, with an effective moment of 0.83 mB/Fe. 57Fe Mossbauer studies (MS) have been performed at 95 and 200 K. The spectra at both temperatures are composed of two sub-spectra. At 200 K the major one (88%), is almost a singlet, and corresponds to those Fe nuclei, which have two oxygen ions in their close vicinity. The minor one, with a large quadrupole splitting, corresponds to Fe nuclei, which have vacancies in their immediate neighborhood. The spectrum at 95 K, exhibits a broadened magnetic split major (84%) sub-spectrum and a very small magnetic splitting in the minor subspectrum. The relative intensities of the subspectra facilitate in estimating the actual amount of oxygen vacancies in the compound to be 7.0(5)%, instead of the nominal LaFeAsO0.90. These results, when compared with reported 57Fe MS of non-superconducting LaFeAsO and superconducting LaFeAsO0.9F0.1, confirm that the studied LaFeAsO0.93 is a superconductivity-magnetism crossover compound of the newly discovered Fe based superconducting family.Comment: 7 pages text + Figs : Comments/suggestions welcome ([email protected]

    The effect of internal pressure on the tetragonal to monoclinic structural phase transition in ReOFeAs: the case of NdOFeAs

    Full text link
    We report the temperature dependent x-ray powder diffraction of the quaternary compound NdOFeAs (also called NdFeAsO) in the range between 300 K and 95 K. We have detected the structural phase transition from the tetragonal phase, with P4/nmm space group, to the orthorhombic or monoclinic phase, with Cmma or P112/a1 (or P2/c) space group, over a broad temperature range from 150 K to 120 K, centered at T0 ~137 K. Therefore the temperature of this structural phase transition is strongly reduced, by about ~30K, by increasing the internal chemical pressure going from LaOFeAs to NdOFeAs. In contrast the superconducting critical temperature increases from 27 K to 51 K going from LaOFeAs to NdOFeAs doped samples. This result shows that the normal striped orthorhombic Cmma phase competes with the superconducting tetragonal phase. Therefore by controlling the internal chemical pressure in new materials it should be possible to push toward zero the critical temperature T0 of the structural phase transition, giving the striped phase, in order to get superconductors with higher Tc.Comment: 9 pages, 3 figure

    Feshbach resonances and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors

    Full text link
    High Tc superconductivity in FeAs-based multilayers (pnictides), evading temperature decoherence effects in a quantum condensate, is assigned to a Feshbach resonance (called also shape resonance) in the exchange-like interband pairing. The resonance is switched on by tuning the chemical potential at an electronic topological transition (ETT) near a band edge, where the Fermi surface topology of one of the subbands changes from 1D to 2D topology. We show that the tuning is realized by changing i) the misfit strain between the superconducting planes and the spacers ii) the charge density and iii) the disorder. The system is at the verge of a catastrophe i.e. near a structural and magnetic phase transition associated with the stripes (analogous to the 1/8 stripe phase in cuprates) order to disorder phase transition. Fine tuning of both the chemical potential and the disorder pushes the critical temperature Ts of this phase transition to zero giving a quantum critical point. Here the quantum lattice and magnetic fluctuations promote the Feshbach resonance of the exchange-like anisotropic pairing. This superconducting phase that resists to the attacks of temperature is shown to be controlled by the interplay of the hopping energy between stripes and the quantum fluctuations. The superconducting gaps in the multiple Fermi surface spots reported by the recent ARPES experiment of D. V. Evtushinsky et al. arXiv:0809.4455 are shown to support the Feshbach scenario.Comment: 31 pages, 7 figure
    corecore