18,044 research outputs found

    Wilson ratio of Fermi gases in one dimension

    Get PDF
    We calculate the Wilson ratio of the one-dimensional Fermi gas with spin imbalance. The Wilson ratio of attractively interacting fermions is solely determined by the density stiffness and sound velocity of pairs and of excess fermions for the two-component Tomonaga-Luttinger liquid (TLL) phase. The ratio exhibits anomalous enhancement at the two critical points due to the sudden change in the density of states. Despite a breakdown of the quasiparticle description in one dimension, two important features of the Fermi liquid are retained, namely the specific heat is linearly proportional to temperature whereas the susceptibility is independent of temperature. In contrast to the phenomenological TLL parameter, the Wilson ratio provides a powerful parameter for testing universal quantum liquids of interacting fermions in one, two and three dimensions.Comment: 5+2 pages, 4+1 figures, Eq. (4) is proved, figures were refine

    Incentivizing High Quality Crowdwork

    Full text link
    We study the causal effects of financial incentives on the quality of crowdwork. We focus on performance-based payments (PBPs), bonus payments awarded to workers for producing high quality work. We design and run randomized behavioral experiments on the popular crowdsourcing platform Amazon Mechanical Turk with the goal of understanding when, where, and why PBPs help, identifying properties of the payment, payment structure, and the task itself that make them most effective. We provide examples of tasks for which PBPs do improve quality. For such tasks, the effectiveness of PBPs is not too sensitive to the threshold for quality required to receive the bonus, while the magnitude of the bonus must be large enough to make the reward salient. We also present examples of tasks for which PBPs do not improve quality. Our results suggest that for PBPs to improve quality, the task must be effort-responsive: the task must allow workers to produce higher quality work by exerting more effort. We also give a simple method to determine if a task is effort-responsive a priori. Furthermore, our experiments suggest that all payments on Mechanical Turk are, to some degree, implicitly performance-based in that workers believe their work may be rejected if their performance is sufficiently poor. Finally, we propose a new model of worker behavior that extends the standard principal-agent model from economics to include a worker's subjective beliefs about his likelihood of being paid, and show that the predictions of this model are in line with our experimental findings. This model may be useful as a foundation for theoretical studies of incentives in crowdsourcing markets.Comment: This is a preprint of an Article accepted for publication in WWW \c{opyright} 2015 International World Wide Web Conference Committe

    Relation Embedding for Personalised POI Recommendation

    Full text link
    Point-of-Interest (POI) recommendation is one of the most important location-based services helping people discover interesting venues or services. However, the extreme user-POI matrix sparsity and the varying spatio-temporal context pose challenges for POI systems, which affects the quality of POI recommendations. To this end, we propose a translation-based relation embedding for POI recommendation. Our approach encodes the temporal and geographic information, as well as semantic contents effectively in a low-dimensional relation space by using Knowledge Graph Embedding techniques. To further alleviate the issue of user-POI matrix sparsity, a combined matrix factorization framework is built on a user-POI graph to enhance the inference of dynamic personal interests by exploiting the side-information. Experiments on two real-world datasets demonstrate the effectiveness of our proposed model.Comment: 12 pages, 3 figures, Accepted in the 24th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2020

    Heterogeneous Metric Learning of Categorical Data with Hierarchical Couplings

    Full text link
    © 1989-2012 IEEE. Learning appropriate metric is critical for effectively capturing complex data characteristics. The metric learning of categorical data with hierarchical coupling relationships and local heterogeneous distributions is very challenging yet rarely explored. This paper proposes a Heterogeneous mEtric Learning with hIerarchical Couplings (HELIC for short) for this type of categorical data. HELIC captures both low-level value-to-attribute and high-level attribute-to-class hierarchical couplings, and reveals the intrinsic heterogeneities embedded in each level of couplings. Theoretical analyses of the effectiveness and generalization error bound verify that HELIC effectively represents the above complexities. Extensive experiments on 30 data sets with diverse characteristics demonstrate that HELIC-enabled classification significantly enhances the accuracy (up to 40.93 percent), compared with five state-of-the-art baselines

    Creep and fracture behavior of peak-aged Mg-11Y-5Gd-2Zn-0.5Zr (wt pct)

    Get PDF
    The tensile-creep and creep-fracture behavior of peak-aged Mg-11Y-5Gd-2Zn-0.5Zr (wt pct) (WGZ1152) was investigated at temperatures between 523 K (250 °C) to 598 K (325 °C) (0.58 to 0.66 T m) and stresses between 30 MPa to 140 MPa. The minimum creep rate of the alloy was almost two orders of magnitude lower than that for WE54-T6 and was similar to that for HZ32-T5. The creep behavior exhibited an extended tertiary creep stage, which was believed to be associated with precipitate coarsening. The creep stress exponent value was 4.5, suggesting that dislocation creep was the rate-controlling mechanism during secondary creep. At T = 573 K (300 °C), basal slip was the dominant deformation mode. The activation energy for creep (Q avg = 221 ± 20 kJ/mol) was higher than that for self-diffusion in magnesium and was believed to be associated with the presence of second-phase particles as well as the activation of nonbasal slip and cross slip. This finding was consistent with the slip-trace analysis and surface deformation observations, which revealed that the nonbasal slip was active. The minimum creep rate and time-to-fracture followed the original and modified Monkman-Grant relationships. The microcracks and cavities nucleated preferentially at grain boundaries and at the interface between the matrix phase and the second phase. In-situ creep experiments highlighted the intergranular cracking evolution

    Creep and fracture behavior of peak-aged Mg-11Y-5Gd-2Zn-0.5Zr (wt pct)

    Get PDF
    The tensile-creep and creep-fracture behavior of peak-aged Mg-11Y-5Gd-2Zn-0.5Zr (wt pct) (WGZ1152) was investigated at temperatures between 523 K (250 °C) to 598 K (325 °C) (0.58 to 0.66 T m) and stresses between 30 MPa to 140 MPa. The minimum creep rate of the alloy was almost two orders of magnitude lower than that for WE54-T6 and was similar to that for HZ32-T5. The creep behavior exhibited an extended tertiary creep stage, which was believed to be associated with precipitate coarsening. The creep stress exponent value was 4.5, suggesting that dislocation creep was the rate-controlling mechanism during secondary creep. At T = 573 K (300 °C), basal slip was the dominant deformation mode. The activation energy for creep (Q avg = 221 ± 20 kJ/mol) was higher than that for self-diffusion in magnesium and was believed to be associated with the presence of second-phase particles as well as the activation of nonbasal slip and cross slip. This finding was consistent with the slip-trace analysis and surface deformation observations, which revealed that the nonbasal slip was active. The minimum creep rate and time-to-fracture followed the original and modified Monkman-Grant relationships. The microcracks and cavities nucleated preferentially at grain boundaries and at the interface between the matrix phase and the second phase. In-situ creep experiments highlighted the intergranular cracking evolution
    • …
    corecore